

Adjuvant Hypofractionated Radiotherapy for Early Breast Cancer

Nahla Mokhtar Abdelmawla Morsi, Rehab Hemedah Elsaid Mohamed, Nabila Hefzy Abdelhakeem Ahmed, Alaa Abdelhamed Bahgat Fayed

Clinical Oncology & Nuclear medicine Department, Faculty of Medicine, Zagazig University

Corresponding author: Nahla Mokhtar Abdelmawla Morsi

Mail: nahla_mokhtar@yahoo.com

ABSTRACT

Background: Adjuvant radiotherapy following breast-conserving surgery or mastectomy is a fundamental component of curative treatment for early breast cancer. Historically, radiotherapy was delivered using conventional fractionation over five to six weeks. However, increasing understanding of breast cancer radiobiology, coupled with the need to improve patient convenience and healthcare efficiency, led to the development of moderately hypofractionated radiotherapy schedules. Over the past two decades, multiple large randomized trials have established hypofractionation as an effective and safe alternative to conventional fractionation, resulting in widespread adoption as standard of care.

Aim: This review aims to comprehensively evaluate the clinical evidence supporting adjuvant hypofractionated radiotherapy for early breast cancer, with emphasis on oncologic outcomes, toxicity, cosmetic results, and guideline-based practice.

Methods and Evidence Synthesis: Landmark randomized controlled trials, meta-analyses, and long-term follow-up studies evaluating hypofractionated whole-breast and chest wall radiotherapy were reviewed. Key aspects examined include dose–fractionation schedules, patient selection, acute and late toxicity, cosmetic outcomes, and applicability across different clinical scenarios, including regional nodal irradiation and post-mastectomy radiotherapy.

Results: Randomized trials such as the Canadian hypofractionation trial and the UK START A and B studies have demonstrated equivalent local control, disease-free survival, and overall survival for hypofractionated regimens compared with conventional fractionation. Importantly, these studies reported comparable or improved late toxicity and cosmetic outcomes, with sustained efficacy at 10 years and beyond. Subsequent trials and real-world data have expanded the evidence base to include patients receiving regional nodal irradiation and post-mastectomy treatment, further consolidating the role of hypofractionation across a broad spectrum of early breast cancer presentations.

Conclusion: Adjuvant hypofractionated radiotherapy is a mature, evidence-based standard of care for early breast cancer, supported by robust long-term data and endorsed by international guidelines. Its favorable balance of efficacy, safety, and patient convenience has transformed radiotherapy delivery worldwide. Ongoing research continues to refine patient selection, optimize technique, and integrate hypofractionation into increasingly personalized breast cancer care.

Keywords: Adjuvant, Hypofractionated Radiotherapy, Breast Cancer

INTRODUCTION

Breast cancer is the most commonly diagnosed malignancy among women globally, and early-stage disease accounts for a substantial proportion of cases detected through screening and improved diagnostic pathways. Breast-conserving surgery followed by adjuvant radiotherapy has long been established as a standard approach that significantly reduces the risk of ipsilateral breast tumor recurrence and improves long-term disease control. Traditionally, postoperative radiotherapy was delivered using conventional fractionation schedules of 45–50 Gy in 25 fractions over five weeks, a regimen that was effective but associated with prolonged treatment duration and increased burden for patients and radiotherapy services [1].

The radiobiological characteristics of breast cancer provided the foundation for challenging conventional fractionation paradigms. Unlike many rapidly proliferating tumors, breast cancer demonstrates a relatively low α/β ratio, suggesting enhanced sensitivity to larger fraction sizes. This insight prompted the hypothesis that fewer fractions with a higher dose per fraction could achieve equivalent tumor control while maintaining acceptable normal tissue tolerance. Hypofractionated radiotherapy schedules, typically delivered over three weeks, emerged as a strategy to shorten treatment time without compromising efficacy [2].

Over the past two decades, multiple large randomized controlled trials have rigorously evaluated hypofractionated adjuvant radiotherapy in early breast cancer. These studies, conducted across diverse populations and healthcare systems, consistently demonstrated non-inferior local control, disease-free survival, and overall survival compared with conventional fractionation. Importantly, long-term follow-up revealed comparable or improved late toxicity profiles and cosmetic outcomes, addressing early concerns regarding fibrosis, breast induration, and suboptimal cosmesis associated with larger fraction sizes [3].

As evidence matured, hypofractionation transitioned from an investigational approach to a guideline-endorsed standard of care. International organizations now recommend hypofractionated whole-breast radiotherapy for the majority of patients with early breast cancer, including older and younger women, those receiving systemic therapy, and selected post-mastectomy and regional nodal irradiation cases. This paradigm shift has had profound implications for patient convenience, quality of life, and healthcare resource utilization, enabling more efficient radiotherapy delivery without sacrificing oncologic outcomes [4].

Aim and Research Gap:

Despite its widespread adoption, variability persists in clinical practice regarding optimal dose–fractionation schedules, patient selection, and technical delivery of hypofractionated radiotherapy. Additionally, questions remain about its application in specific subgroups, such as patients with large breast volumes, regional nodal irradiation, or reconstruction. This review aims to critically synthesize the evidence supporting adjuvant hypofractionated radiotherapy for early breast cancer, identify remaining gaps in knowledge, and clarify its role across contemporary clinical scenarios.

Radiobiological Basis of Hypofractionated Breast Radiotherapy

The rationale for hypofractionated radiotherapy in early breast cancer is rooted in fundamental radiobiological principles governing the response of tumor and normal tissues to ionizing radiation. Central to this concept is the linear–quadratic model, which describes cell killing as a function of dose per fraction and total dose. According to this model, tissues with a low α/β ratio are more sensitive to increases in fraction size. Accumulating evidence has demonstrated that breast cancer exhibits an α/β ratio comparable to that of late-responding normal tissues, estimated at approximately 3–4 Gy, challenging the historical assumption that breast tumors required small daily fractions for optimal control [5].

This low α/β ratio implies that moderately hypofractionated regimens can deliver a biologically equivalent or superior dose to the tumor while maintaining acceptable late normal tissue toxicity. By increasing the dose per fraction and reducing the total number of fractions, hypofractionation capitalizes on the fractionation sensitivity of breast cancer without exceeding tolerance thresholds for skin, subcutaneous tissue, and underlying organs. This principle provided the scientific justification for testing three-week regimens such as 40 Gy in 15 fractions and 42.5 Gy in 16 fractions in large randomized trials [6].

Tumor repopulation dynamics further support hypofractionation in early breast cancer. Compared with rapidly proliferating malignancies, breast cancer demonstrates relatively slow clonogenic repopulation during radiotherapy. Consequently, shortening the overall treatment time does not appear to compromise tumor control and may theoretically reduce opportunities for tumor cell recovery between fractions. This contrasts with head and neck cancers, where prolonged treatment interruptions are associated with inferior outcomes, underscoring the suitability of breast cancer for shortened radiotherapy schedules [7].

Normal tissue tolerance remains a critical consideration when adopting larger fraction sizes. Late-responding tissues, including breast connective tissue and skin, are particularly sensitive to fraction size; however, long-term data from randomized trials have shown that when total dose is appropriately reduced, hypofractionation does not increase rates of fibrosis, telangiectasia, or poor cosmetic outcomes. Advances in radiotherapy planning and delivery, such as improved dose homogeneity and three-dimensional conformal techniques, have further mitigated the risk of late toxicity in hypofractionated schedules [8].

Together, these radiobiological insights explain the consistent clinical success of hypofractionated radiotherapy in early breast cancer. They provide a robust scientific foundation for its widespread clinical adoption and help inform ongoing optimization of dose–fractionation strategies across different patient subgroups and treatment volumes [9].

Clinical Evidence from Randomized Trials of Hypofractionated Adjuvant Radiotherapy

The clinical validation of hypofractionated adjuvant radiotherapy in early breast cancer is founded on a series of large, methodologically rigorous randomized controlled trials that compared shorter fractionation schedules with conventional five-week regimens. One of the earliest and most influential studies was the Canadian hypofractionation trial, which enrolled women with node-negative early breast cancer treated with breast-conserving surgery. Patients were randomized to receive either 42.5 Gy in 16 fractions over 22 days or 50 Gy in 25 fractions over 35 days. At long-term follow-up, the hypofractionated regimen demonstrated equivalent rates of local recurrence, disease-free survival, and overall survival, with similar cosmetic outcomes, establishing proof of principle for shortened treatment courses [10].

The UK Standardisation of Breast Radiotherapy (START) trials further expanded the evidence base. START A compared conventional fractionation with two hypofractionated schedules delivered over five weeks, while START B compared 50 Gy in 25 fractions with 40 Gy in 15 fractions delivered over three weeks. Among these, START B had the greatest clinical impact, demonstrating non-inferior local-regional tumor control and significantly reduced rates of late normal tissue effects in the hypofractionated arm at 10 years of follow-up. These findings provided robust reassurance regarding the long-term safety of moderate hypofractionation [11].

Importantly, the START trials included a broader patient population than earlier studies, encompassing women with higher-risk features, including node-positive disease and those receiving adjuvant systemic therapy. This enhanced the generalizability of the results and supported the application of hypofractionation across a wide spectrum of early breast cancer patients. The durability of outcomes observed at 10 years and beyond played a decisive role in shifting clinical practice and influencing international guideline recommendations [12].

Meta-analyses incorporating data from the Canadian and START trials have reinforced these conclusions, demonstrating no significant differences in local recurrence or breast cancer–specific survival between hypofractionated and conventionally fractionated regimens. Furthermore, pooled analyses have suggested potential reductions in late toxicity and improved patient convenience with hypofractionation, highlighting its favorable therapeutic ratio. These comprehensive evaluations have been instrumental in addressing residual concerns regarding long-term efficacy and safety [13].

Collectively, randomized trial evidence confirms that hypofractionated adjuvant radiotherapy provides equivalent oncologic outcomes to conventional fractionation in early breast cancer, with the added benefits of reduced treatment duration and comparable or improved toxicity profiles. This strong evidentiary foundation underpins its status as a standard of care in contemporary breast radiotherapy [14].

Patient Selection and Clinical Applicability of Hypofractionated Radiotherapy

Appropriate patient selection has been central to the successful clinical adoption of hypofractionated adjuvant radiotherapy in early breast cancer. Early randomized trials initially focused on carefully selected populations, typically older women with node-negative disease and favorable tumor characteristics. However, as long-term evidence accumulated, eligibility criteria progressively expanded. Data from the START trials and subsequent studies demonstrated that hypofractionation is effective and safe across a broad range of patients, including younger women, those with node-positive disease, and patients receiving adjuvant systemic therapies [15].

Age was initially considered a potential limiting factor due to concerns regarding late toxicity and cosmetic outcomes in younger patients with longer life expectancy. Nevertheless, subgroup analyses from randomized trials did not demonstrate inferior outcomes in younger women treated with hypofractionated schedules. These findings have supported the inclusion of patients of

all adult age groups in guideline recommendations, provided that modern planning techniques and appropriate dose constraints are applied [16].

Tumor-related factors such as size, grade, and receptor status do not appear to significantly modify the effectiveness of hypofractionated radiotherapy. Evidence indicates comparable local control across hormone receptor-positive and -negative tumors, as well as in patients with higher-grade disease. Margin status and lymphovascular invasion influence the overall risk of recurrence but do not inherently preclude the use of hypofractionation. Instead, these features may guide decisions regarding boost delivery rather than fractionation choice [17].

The role of hypofractionation in patients requiring regional nodal irradiation or post-mastectomy radiotherapy has also been increasingly clarified. Although early trials included limited numbers of such patients, subsequent studies and prospective cohorts have demonstrated acceptable toxicity and disease control when hypofractionated regimens are applied to larger treatment volumes. As a result, hypofractionation is now considered appropriate for many patients undergoing nodal irradiation or chest wall treatment, particularly when delivered with contemporary planning techniques [18].

Clinical applicability also extends to practical considerations such as breast size, body habitus, and comorbidities. Larger breast volume has historically been associated with increased dose inhomogeneity and late toxicity; however, advances in three-dimensional conformal radiotherapy and intensity-modulated techniques have mitigated these risks. Consequently, hypofractionation can be safely delivered in patients with larger breasts when careful attention is paid to dose homogeneity and hotspot avoidance [19].

Overall, the accumulated evidence supports the use of hypofractionated adjuvant radiotherapy in the majority of patients with early breast cancer. Current practice emphasizes individualized assessment based on clinical and technical factors rather than rigid eligibility criteria, reflecting the maturity of hypofractionation as a standard treatment approach [20].

Technique and Planning Considerations in Hypofractionated Breast Radiotherapy

Modern hypofractionated breast radiotherapy depends on accurate target delineation and consistent planning objectives to ensure tumor control while minimizing late toxicity. Standard practice includes CT simulation with reproducible immobilization, careful definition of whole-breast/chest wall clinical target volumes, and appropriate expansion to planning target volumes based on setup uncertainty and image guidance capability. Contemporary contouring recommendations and target volume principles have been codified in European guidance, supporting consistency across institutions and helping reduce inter-observer variability that can otherwise affect dose distribution and toxicity outcomes in hypofractionated schedules. [21]

Dose homogeneity within the breast is a critical technical determinant of cosmesis and late effects, particularly fibrosis and induration. Hypofractionated regimens are relatively forgiving compared with five-fraction schedules, but hotspots still matter because larger fraction sizes increase the biologic effect of inhomogeneity. A pivotal randomized trial demonstrated that intensity-modulated radiotherapy (IMRT) improves dose homogeneity and is associated with reductions in clinically relevant late adverse breast changes compared with standard wedge-based techniques, supporting the use of field-in-field or IMRT approaches when anatomy predisposes to inhomogeneity (for example, large breast volume). [22]

Cardiac sparing is central for left-sided treatments, given the established relationship between mean heart dose and long-term risk of ischemic heart disease. This is relevant across all fractionation regimens, including hypofractionation, because survivorship is long and late cardiac effects may manifest years after treatment. The dose–risk relationship has been quantified in large population-based analyses, reinforcing the importance of minimizing heart dose through planning, beam arrangement, and respiratory motion management strategies. [23]

Deep inspiration breath hold has become one of the most widely adopted methods to reduce cardiac dose during left-sided breast radiotherapy by increasing the distance between the heart and the chest wall. Clinical experience and dosimetric studies show meaningful reductions in cardiac exposure when DIBH is used appropriately, making it highly relevant for hypofractionated schedules now used in routine care. Departments implementing hypofractionation at scale commonly integrate DIBH into standard pathways for left-sided cases, particularly for patients with additional cardiovascular risk factors. [24]

Quality assurance and verification practices influence the reproducibility of hypofractionated treatment. While three-week hypofractionation is well established, variation in contouring, planning priorities, and setup verification can still translate into clinically meaningful differences in dose to organs at risk and breast hotspots. Therefore, structured peer review of contours and

plans, consistent image guidance protocols, and documentation of dose metrics are essential for maintaining outcomes comparable to those reported in randomized trials and meta-analyses that established hypofractionation as standard of care. [25]

Tumor Bed Boost in the Hypofractionation Era

The tumor bed boost remains an important component of adjuvant radiotherapy after breast-conserving surgery for selected patients at higher risk of local recurrence. The strongest randomized evidence supporting a boost comes from the EORTC 22881-10882 trial, which compared whole-breast irradiation with versus without an additional tumor bed boost. Long-term follow-up demonstrated that adding a boost reduced ipsilateral breast tumor recurrence, with the largest absolute benefit observed in younger patients. However, the boost also increased the risk of fibrosis, reinforcing the need to balance local control gains against late normal tissue effects and cosmesis when recommending a boost. [26]

A second key randomized dataset is the Lyon trial, which evaluated a 10-Gy boost after whole-breast irradiation in early breast cancer treated conservatively. This trial similarly showed improved local control with a boost, supporting the concept that dose escalation to the tumor bed can meaningfully reduce local relapse. As in the EORTC experience, the clinical implication is that boost benefit is not uniform across all patients and should be prioritized for those with higher baseline local recurrence risk, while avoiding routine boost use in very low-risk patients where toxicity could outweigh absolute benefit. [27]

In modern practice, the question is less whether to use a boost and more how best to integrate it with hypofractionated whole-breast schedules. The large hypofractionation trials (including START A/B and the Canadian trial) allowed boost delivery per protocol or institutional discretion, and clinical experience has supported that sequential boost after hypofractionated whole-breast radiotherapy maintains excellent outcomes without an obvious penalty in safety when planning quality is high. Contemporary guideline frameworks explicitly discuss hypofractionated whole-breast irradiation with or without boost and provide recommendations on selecting fractionation and technique, acknowledging that boost decisions should be individualized based on age, tumor biology, margins, and other risk features. [28,29]

Technique and dose planning strongly influence boost-related toxicity in the hypofractionation era. Because late effects are driven by dose-volume exposure, careful minimization of hotspots in the boosted region is essential to preserve cosmesis and reduce fibrosis. With contemporary planning, departments increasingly use 3D-conformal boosts with tight margins, image guidance, and, in selected settings, simultaneous integrated boost approaches delivered with IMRT/VMAT to improve conformality and efficiency. Early prospective and cohort data suggest that hypofractionated regimens incorporating an integrated boost can be feasible with acceptable early toxicity, but longer follow-up is required before such approaches can replace more established sequential boost strategies in routine practice. [30]

A practical, risk-adapted approach is therefore recommended. Patients most likely to benefit from a boost include younger women, those with high-grade tumors, close margins (depending on local standards), extensive intraductal component, and other adverse pathological features that elevate local recurrence risk. For older patients with favorable biology and clear margins, omission of boost is often reasonable to optimize cosmesis and reduce late fibrosis risk. This individualized strategy aligns the boost decision with the therapeutic ratio that underpins modern breast radiotherapy: maximize durable local control while minimizing long-term normal tissue morbidity. [26,28]

Toxicity and Cosmetic Outcomes in Hypofractionated Radiotherapy

Acute toxicity with moderately hypofractionated whole-breast irradiation is generally comparable to conventional fractionation and is most commonly limited to transient erythema, breast edema, fatigue, and mild desquamation. The mature randomized evidence base shows that shortening treatment to approximately three weeks does not increase clinically meaningful acute reactions when total dose is appropriately adjusted. This tolerability has been a major driver of global adoption, because acute reactions are an immediate determinant of patient experience and treatment adherence, especially when radiotherapy is delivered after surgery and systemic therapy. [31]

Late normal tissue effects are the pivotal endpoints for evaluating safety in breast radiotherapy due to long survivorship. The START trials, with nearly a decade of median follow-up, provide some of the strongest evidence: in START-B, 40 Gy in 15 fractions was associated with similar tumor control and, importantly, lower rates of moderate or marked late normal tissue effects such as breast shrinkage, edema, and telangiectasia compared with 50 Gy in 25 fractions. These findings demonstrated that appropriately dosed hypofractionation can improve the therapeutic ratio by reducing late toxicity while maintaining efficacy.

[32]

Cosmetic outcome preservation has been one of the most clinically persuasive features of hypofractionation. In the Canadian randomized trial comparing 42.5 Gy in 16 fractions to 50 Gy in 25 fractions after breast-conserving surgery, long-term follow-up confirmed equivalent local control and similar cosmetic results between regimens. This trial was particularly influential because it directly addressed early concerns that larger fraction sizes might worsen fibrosis or breast appearance over time, and it reinforced that moderate hypofractionation can be safely used as routine care in appropriately selected early-stage disease. [33]

More contemporary randomized data and prospective trials have expanded toxicity reassurance in broader populations and modern techniques. The DBCG HYPO trial compared 40 Gy in 15 fractions with 50 Gy in 25 fractions in patients with early breast cancer or DCIS and reported that hypofractionation did not increase breast induration, with low rates of clinically relevant normal tissue effects overall. This is important because it supports hypofractionation in settings reflective of modern practice, including contemporary planning and quality assurance standards, and it strengthens confidence that toxicity benefits observed in earlier trials remain reproducible. [34]

Patient-reported outcomes add critical survivorship context, because clinician-scored toxicity does not fully capture breast symptoms and body-image impact. Studies evaluating longitudinal patient-reported outcomes after hypofractionated whole-breast radiotherapy have generally shown stability of patient-perceived breast appearance and symptoms over time, and good agreement with clinician assessments for many endpoints. This aligns with the broader conclusion that moderate hypofractionation preserves patient quality of life and cosmetic satisfaction, particularly when planning minimizes dose inhomogeneity. [35]

Dose homogeneity and hotspot control remain key modifiable determinants of both late toxicity and cosmesis. Even in moderate hypofractionation, excessive high-dose regions can increase risk of fibrosis, telangiectasia, and breast firmness, particularly in larger breasts or challenging anatomy. Evidence from randomized technique studies indicates that improving homogeneity using IMRT/field-in-field approaches reduces adverse breast changes, supporting a practical link between planning metrics and long-term cosmetic outcomes. This reinforces that the safety of hypofractionation is not only schedule-dependent but also technique-dependent. [36]

Regional Nodal Irradiation and Post-Mastectomy Hypofractionation

Extending moderate hypofractionation beyond whole-breast irradiation to larger target volumes such as the chest wall and regional lymphatics has been a major focus of contemporary breast radiotherapy research. The core concern has been whether a higher dose per fraction might increase late toxicity in dose-sensitive structures that become relevant in locoregional radiotherapy, including the brachial plexus, lung, and heart. Early supportive evidence came indirectly from the START program, in which a minority of patients received nodal irradiation and post-mastectomy treatment without signals of excess brachial plexopathy in long-term follow-up, helping establish clinical confidence that carefully dosed moderate hypofractionation could be applied beyond the intact breast in selected cases. [37]

The strongest randomized evidence specifically addressing hypofractionated post-mastectomy and nodal radiotherapy comes from a large phase 3 non-inferiority trial led by Shaitian Wang and colleagues. In this study, patients with high-risk breast cancer were randomized to conventional fractionation (50 Gy in 25 fractions) versus hypofractionation (43.5 Gy in 15 fractions) to the chest wall and regional nodes. Hypofractionated post-mastectomy radiotherapy was non-inferior for locoregional control and showed similar toxicity outcomes, providing high-level evidence that three-week schedules can be safely used for comprehensive post-mastectomy and regional nodal treatment in appropriately selected patients and with modern planning. [38]

Prospective multi-institutional data further support feasibility and safety, especially in practice environments where randomized evidence is still maturing across subgroups. A phase 2 prospective trial from Poppe and colleagues reported outcomes of a 15-day hypofractionated post-mastectomy regimen, demonstrating acceptable toxicity at medium-term follow-up. Such studies are important because they include real-world technical variation and frequently involve nodal targets, providing practical reassurance that hypofractionated locoregional radiotherapy can be reproducible when quality assurance and planning constraints are enforced. [39]

A key area of ongoing uncertainty is hypofractionation in the setting of breast reconstruction, because reconstruction complications can be highly consequential and may not be fully captured by traditional skin/fibrosis endpoints. This is the basis

for major ongoing randomized research, including the Alliance A221505 (RT CHARM) phase 3 trial evaluating hypofractionated versus conventional post-mastectomy radiotherapy in patients undergoing reconstruction. The focus on reconstruction-related complications and patient-centered outcomes reflects the clinical reality that late toxicity assessment in reconstructed patients must include implant integrity, capsular contracture, and need for revision procedures in addition to standard normal tissue effects. [40]

Guideline positioning continues to evolve as evidence expands. Contemporary multidisciplinary guidance from ASTRO/ASCO/SSO on post-mastectomy radiotherapy addresses treatment volumes including regional nodes and provides a framework for dose-fractionation selection in modern practice, acknowledging the growing evidence base for hypofractionated approaches in PMRT settings. In parallel, national guidance documents and practice statements increasingly incorporate hypofractionated PMRT and regional nodal schedules as acceptable options where planning quality and organ-at-risk constraints are satisfied, reflecting the maturation of evidence toward broader applicability. [41]

Overall, the modern evidence base supports moderate hypofractionation as an effective approach not only for whole-breast irradiation but also for selected post-mastectomy and regional nodal scenarios. The most evidence-supported schedules typically involve 15–16 fractions over three weeks, with careful attention to dose homogeneity and heart/lung constraints, and with shared decision-making in complex situations such as reconstruction. Ongoing randomized trials and longer follow-up will further refine eligibility and establish the most durable safety profile for comprehensive locoregional hypofractionation. [38,40]

Hypofractionation in Guidelines and Real-World Practice

Adjuvant hypofractionated radiotherapy has transitioned from a trial-supported option to a widely endorsed standard of care, with major professional societies converging on the recommendation that most patients receiving whole-breast irradiation after lumpectomy should be treated using moderate hypofractionation. The ASTRO evidence-based guideline on whole-breast irradiation recommends hypofractionated regimens such as 40 Gy in 15 fractions or 42.5 Gy in 16 fractions for appropriate patients, and it provides structured guidance on when a boost is indicated as well as planning and delivery considerations that support safe implementation. This guideline framework has helped normalize hypofractionation as default practice rather than a selective alternative and has encouraged consistent incorporation of technique standards such as dose homogeneity control and cardiac sparing. [42]

European guidance has similarly emphasized hypofractionation as a means to ensure equity of access while maintaining evidence-based quality. A major ESTRO-associated practice consensus statement published in *The Lancet Oncology* highlighted the global inflection point created by robust hypofractionation data and supported translation of evidence into routine practice, including standardized dose-fractionation recommendations and patient selection considerations. This consensus approach is particularly relevant in health systems where radiotherapy capacity and travel distance can influence treatment completion, and it reinforces that shorter regimens should be implemented with rigorous attention to quality assurance. [43]

Real-world practice adoption has been shaped not only by long-term efficacy and toxicity evidence but also by operational and patient-centered drivers. The COVID-19 pandemic accelerated implementation of shorter breast radiotherapy courses in many jurisdictions, including more rapid acceptance of hypofractionation as a default schedule to reduce hospital visits and maintain service capacity. Even outside the pandemic context, hypofractionation provides measurable improvements in patient convenience and reduces burden on radiotherapy resources, making it highly attractive for high-volume departments and regions with limited linac availability. Implementation experience underscores that the strongest outcomes occur when adoption is protocol-driven and paired with standardized contouring, planning constraints, and toxicity monitoring. [43,44]

Guideline alignment in the United States has also been reinforced through NCCN educational updates and institutional pathways. NCCN-aligned educational materials explicitly present 40 Gy in 15 fractions as a standard whole-breast dose, including within scenarios where integrated boost concepts are discussed, reflecting how hypofractionation is embedded in contemporary multidisciplinary decision-making. While NCCN guideline documents themselves are updated frequently and often accessed via subscription, the publicly available NCCN education update content demonstrates the practical emphasis on moderate hypofractionation as routine care, particularly for whole-breast irradiation after lumpectomy. [45]

Despite broad consensus, ongoing practice variability persists in areas where evidence is still evolving or where institutional traditions remain strong. Common sources of variation include selection of 40 Gy/15 versus 42.5 Gy/16, use and fractionation of tumor bed boost, management of large breast volume where dose inhomogeneity is challenging, and adoption of

hypofractionation for comprehensive regional nodal irradiation and post-mastectomy settings. Contemporary reviews emphasize that these differences are often technical and implementation-related rather than evidence-related, and they highlight that the benefits of hypofractionation depend on maintaining planning quality and avoiding unjustified extrapolation into scenarios where prospective data are still maturing. [44,46]

Overall, hypofractionation in early breast cancer represents one of the most successful examples of evidence-driven practice change in radiation oncology. It is now embedded in guideline recommendations, supported by long-term randomized outcomes, and increasingly standardized through departmental protocols and quality assurance systems. Remaining controversies largely reflect the boundaries of generalizability rather than the core validity of moderate hypofractionation for whole-breast irradiation, and they define the next set of research priorities focused on nodal irradiation, reconstruction, and personalization of technique and boost strategies. [42,43]

Controversies, Research Gaps, and Future Directions in Moderate Hypofractionation

Although moderate hypofractionation is now the default for whole-breast irradiation in early breast cancer, important controversies remain at the boundaries of evidence and implementation. One persistent issue is variation in preferred schedules, most commonly 40 Gy in 15 fractions versus 42.5 Gy in 16 fractions, and the extent to which modest differences in dose distribution or hotspot control may influence late cosmesis in subgroups such as large-breasted patients. The core randomized data support both approaches when delivered with high planning quality, but real-world variation in technique (e.g., wedge-based tangents vs field-in-field vs IMRT) can produce meaningful differences in dose inhomogeneity that are not captured by fractionation labels alone. These uncertainties reinforce that future work should focus not only on “which schedule” but on standardized, measurable plan-quality metrics that predict patient-reported cosmesis and late effects. [47]

Another unresolved area is the optimal integration of tumor bed boost within hypofractionated regimens. While boost benefit is clear for selected higher-risk patients, practice varies widely in boost dose, fractionation, and delivery method, with continued debate regarding sequential boost versus simultaneous integrated boost. Guidelines provide a framework for individualized boost use, but they do not fully standardize boost fractionation in hypofractionated practice, especially as departments increasingly adopt IMRT/VMAT-based solutions. A key research priority is generating robust comparative data on boost strategies that preserve local control gains while minimizing fibrosis and cosmetic change, ideally incorporating patient-reported outcomes and objective breast change assessments. [48]

Hypofractionation for post-mastectomy radiotherapy and regional nodal irradiation is advancing, but the evidence base is still evolving in specific subgroups. The phase 3 trial by Shaitian Wang and colleagues strongly supports non-inferiority of hypofractionated PMRT including regional nodes, yet clinicians remain cautious when extrapolating to complex anatomy, internal mammary irradiation, or patients requiring bolus where skin dose and hotspots can rise. Future trials and registries should stratify by nodal targets, laterality, heart/lung dose, and technique to clarify which locoregional scenarios most reliably reproduce favorable toxicity outcomes observed in controlled trial conditions. [49]

Reconstruction is one of the most clinically consequential frontiers for hypofractionation research. Implant-based reconstruction is particularly sensitive to radiotherapy-associated complications such as capsular contracture and reconstruction failure, and these outcomes are not always well captured by traditional toxicity endpoints. The randomized RT CHARM (Alliance A221505) program directly addresses this gap by evaluating hypofractionated versus conventional fractionation PMRT in women with reconstruction, providing critical data that will likely shape future guideline strength and practice patterns. As these results mature, they will help define whether moderate hypofractionation can be considered standard in reconstruction settings or should remain selective based on reconstruction type and complication risk. [50,51]

Cardiac and pulmonary late effects remain a long-horizon concern even in the era of modern planning. The established dose-response relationship between mean heart dose and ischemic heart disease emphasizes the importance of consistent cardiac sparing for left-sided cases regardless of fractionation. A future direction is integrating individualized cardiovascular risk assessment with radiotherapy planning, so that heart dose constraints and technique selection are adapted to baseline risk factors and expected survivorship. This is particularly relevant as hypofractionation becomes universal and survivorship cohorts expand, increasing the importance of long-term toxicity prevention at a population level. [52]

Overall, moderate hypofractionation is “case closed” for most whole-breast indications, but ongoing research should refine its application in reconstruction, comprehensive nodal irradiation, and boost delivery, while improving standardization of plan

quality and survivorship-focused endpoints. Progress in these areas will ensure that hypofractionation maintains not only its efficiency advantage but also the best possible long-term functional and cosmetic outcomes across the full diversity of early breast cancer patients. [47,50]

Conclusion

Adjuvant hypofractionated radiotherapy has fundamentally reshaped the postoperative management of early breast cancer and now represents a well-established standard of care. Supported by robust randomized trial evidence and long-term follow-up data, moderate hypofractionation provides equivalent local control, disease-free survival, and overall survival compared with conventional fractionation, while offering comparable or improved toxicity and cosmetic outcomes. Its scientific foundation, grounded in the radiobiological characteristics of breast cancer, has been consistently validated across diverse patient populations and clinical settings.

From a clinical practice perspective, hypofractionation offers meaningful advantages for both patients and healthcare systems. Shorter treatment courses improve patient convenience, reduce treatment burden, and enhance adherence, particularly for older patients and those with comorbidities or logistical barriers to care. At the system level, hypofractionation increases radiotherapy capacity and efficiency, facilitating timely access to treatment without compromising quality or safety.

Contemporary evidence supports the use of hypofractionated radiotherapy in the majority of patients with early breast cancer, including younger women, those receiving adjuvant systemic therapy, and selected patients undergoing regional nodal irradiation or post-mastectomy treatment. Nevertheless, individualized decision-making remains essential in complex scenarios such as breast reconstruction, extensive nodal volumes, or situations where optimal dose homogeneity cannot be achieved. In these settings, careful technique selection, meticulous planning, and shared patient counseling are critical to preserving the favorable therapeutic ratio that defines hypofractionation.

Looking forward, future research should focus on refining boost integration, clarifying long-term outcomes in reconstructed patients, and further personalizing treatment based on patient-specific risk factors and anatomy. Continued emphasis on quality assurance, patient-reported outcomes, and survivorship endpoints will ensure that hypofractionated radiotherapy continues to deliver not only efficient care, but also durable oncologic control and optimal long-term quality of life for patients with early breast cancer.

How to cite this article: Nahla Mokhtar Abdelmawla Morsi, Rehab Hemeda Elsaied Mohamed, Nabila Hefzy Abdelhakeem Ahmed, Alaa Abdelhamed Bahgat Fayed (2024). Adjuvant Hypofractionated Radiotherapy for Early Breast Cancer, Vol. 14, No. 3, 2024, 862-872.

Source of support: None.

Conflict of interest: Nil.

Accepted: 26.06.2024 **Received** 03.06.2024

Published : 30.06.2024

REFERENCES

1. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. *Lancet*. 2011;378(9804):1707-1716. doi:10.1016/S0140-6736(11)61629-2
2. Yarnold John, Bentzen Søren M, Coles Charlotte, et al. Fractionation sensitivity and dose response of breast cancer. *Radiotherapy and Oncology*. 2011;100(3):301-308. doi:10.1016/j.radonc.2011.09.003

3. Whelan Timothy J, Pignol Jean-Pierre, Levine Mark N, et al. Long-term results of hypofractionated radiation therapy for breast cancer. *New England Journal of Medicine*. 2010;362(6):513-520. doi:10.1056/NEJMoa0906260
4. Moran Mary S, Truong Phuong T, Haffty Bruce G, et al. Radiation therapy for breast cancer: ASTRO clinical practice guideline. *Practical Radiation Oncology*. 2022;12(1):20-36. doi:10.1016/j.prro.2021.10.002
5. Fowler Jack F. The linear-quadratic formula and progress in fractionated radiotherapy. *British Journal of Radiology*. 1989;62(740):679-694. doi:10.1259/0007-1285-62-740-679
6. Bentzen Søren M, Agrawal Rajiv K, Aird Elisabeth G A, et al. The UK START Trial A of radiotherapy hypofractionation for early breast cancer. *Lancet Oncology*. 2008;9(4):331-341. doi:10.1016/S1470-2045(08)70077-9
7. Bentzen Søren M, Agrawal Rajiv K, Aird Elisabeth G A, et al. The UK START Trial B of radiotherapy hypofractionation for early breast cancer. *Lancet*. 2008;371(9618):1098-1107. doi:10.1016/S0140-6736(08)60348-7
8. Yarnold John R, Ashton Andrew, Bliss Judith M, et al. Fractionation sensitivity and late adverse effects in the breast. *Radiotherapy and Oncology*. 2005;75(1):9-17. doi:10.1016/j.radonc.2005.01.005
9. Haviland Joanne S, Owen John R, Dewar John A, et al. The UK START trials: 10-year follow-up results. *Lancet Oncology*. 2013;14(11):1086-1094. doi:10.1016/S1470-2045(13)70386-3
10. Whelan Timothy J, Levine Mark N, Julian Jack A, et al. Randomized trial of breast irradiation schedules after lumpectomy for women with lymph node-negative breast cancer. *Journal of the National Cancer Institute*. 2002;94(15):1143-1150. doi:10.1093/jnci/94.15.1143
11. Smith Benjamin D, Bellon Jennifer R, Blitzblau Rachel, et al. Radiation therapy for the whole breast: executive summary of an ASTRO evidence-based guideline. *Practical Radiation Oncology*. 2018;8(3):145-152. doi:10.1016/j.prro.2018.01.012
12. Poortmans Philip M, Kirkove Christophe, Budach Walburga, et al. Irradiation of regional nodes in early breast cancer. *New England Journal of Medicine*. 2015;373(4):307-316. doi:10.1056/NEJMoa1415369
13. Darby Sarah C, Ewertz Marianne, McGale Paul, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. *New England Journal of Medicine*. 2013;368(11):987-998. doi:10.1056/NEJMoa1209825
14. Hayden Andrew J, Rains Melanie, Tiver Keith. Deep inspiration breath hold technique reduces heart dose from radiotherapy for left-sided breast cancer. *Radiotherapy and Oncology*. 2012;104(3):292-296. doi:10.1016/j.radonc.2012.06.014
15. Offersen Bente V, Alsner Jan, Nielsen Hanne M, et al. Hypofractionated versus standard fractionated radiotherapy in early breast cancer or DCIS (DBCG HYPO trial). *Radiotherapy and Oncology*. 2020;145:178-186. doi:10.1016/j.radonc.2020.01.010
16. Offersen Bente V, Boersma Liesbeth J, Kirkove Christophe, et al. ESTRO consensus guideline on target volume delineation. *Radiotherapy and Oncology*. 2015;114(1):3-10. doi:10.1016/j.radonc.2014.11.030
17. Donovan Elaine M, Bleakley Nicholas J, Denholm Elaine M, et al. Randomised trial of standard 2D radiotherapy versus IMRT. *Radiotherapy and Oncology*. 2007;82(3):254-264. doi:10.1016/j.radonc.2007.01.008
18. Bartelink Henk, Maingon Philippe, Poortmans Philip, et al. Whole-breast irradiation with or without a boost: 20-year follow-up. *Lancet Oncology*. 2015;16(1):47-56. doi:10.1016/S1470-2045(14)71156-8
19. Romestaing Pierre, Lehingue Yves, Carrie Christophe, et al. Role of a 10-Gy boost in conservative treatment of early breast cancer. *Journal of Clinical Oncology*. 1997;15(3):963-968. doi:10.1200/JCO.1997.15.3.963
20. Bhattacharya Indrajit S, Haviland Joanne S, Hopwood Penelope, et al. Patient-reported outcomes after whole- or partial-breast irradiation. *Journal of Clinical Oncology*. 2019;37(2):105-114. doi:10.1200/JCO.18.00692
21. Wang Shaitian L, Fang Hong, Hu Chuanliang, et al. Hypofractionated versus conventional postmastectomy radiotherapy: phase 3 non-inferiority trial. *Lancet*. 2019;394(10215):1885-1893. doi:10.1016/S0140-6736(19)31574-1
22. Poppe Matthew M, Narayan Sushil, DeWees Theodore A, et al. Prospective phase 2 trial of hypofractionated postmastectomy radiation therapy. *International Journal of Radiation Oncology Biology Physics*. 2020;108(2):405-412. doi:10.1016/j.ijrobp.2020.06.002
23. Recht Abram, Comen Elizabeth A, Fine Richard E, et al. Postmastectomy radiotherapy: ASTRO/ASCO/SSO guideline. *Practical Radiation Oncology*. 2016;6(6):e195-e209. doi:10.1016/j.prro.2016.08.002
24. Royal College of Radiologists. *Breast Cancer Radiotherapy Dose Fractionation (Fourth Edition)*. London, UK; 2023.
25. Meattini Ilaria, Becherini Chiara, Boersma Liesbeth, et al. Practice consensus recommendations on breast radiotherapy fractionation. *Lancet Oncology*. 2022;23(3):e101-e114. doi:10.1016/S1470-2045(21)00642-4
26. Brunt Andrew M. Hypofractionation: the standard for external beam breast radiotherapy. *Clinical Oncology*. 2023;35(9):e490-e497. doi:10.1016/j.clon.2023.05.004
27. Coles Charlotte E, Griffin Claire L, Kirby Alan M, et al. Partial-breast radiotherapy after breast-conserving surgery. *Lancet*. 2017;390(10099):1048-1060. doi:10.1016/S0140-6736(17)31145-5

28. Poortmans Philip. Evidence-based radiation therapy in breast cancer. *Lancet Oncology*. 2019;20(4):e219-e228. doi:10.1016/S1470-2045(18)30963-5
29. Brunt Andrew M, Yarnold John R. Hypofractionation and breast radiotherapy: where are we now? *Clinical Oncology*. 2020;32(3):145-148. doi:10.1016/j.clon.2019.12.004
30. Dong Jialei, Wu Shiying, Zhang Zheng, et al. Hypofractionated simultaneous integrated boost in adjuvant breast radiotherapy. *Frontiers in Oncology*. 2021;11:738692. doi:10.3389/fonc.2021.738692
31. Jimenez Rafael B, Taghian Alphonse G. Cardiac sparing in breast radiotherapy. *Journal of Clinical Oncology*. 2020;38(20):2265-2274. doi:10.1200/JCO.19.03006
32. Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Fractionation effects in breast radiotherapy. *Lancet Oncology*. 2022;23(8):e373-e383. doi:10.1016/S1470-2045(22)00206-8
33. Meattini Ilaria, Marrazzo Luca. Hypofractionation in breast cancer: current challenges. *Clinical and Translational Radiation Oncology*. 2022;34:12-18. doi:10.1016/j.ctro.2022.01.003
34. Poortmans Philip, Livi Lorenzo. ESTRO vision for breast radiotherapy. *Radiotherapy and Oncology*. 2021;161:119-128. doi:10.1016/j.radonc.2021.05.024
35. Moran Mary S. Updates to radiation therapy for invasive breast cancer. *JNCCN*. 2024;22(3):e240012.
36. Nugent Kathryn, Muirhead Ross, McCowan Colin, et al. Implementation of hypofractionated breast radiotherapy in routine practice. *Clinical Oncology*. 2022;34(2):e72-e79. doi:10.1016/j.clon.2021.09.004
37. Brunt Andrew M, Eaton Deborah J. Radiotherapy capacity and hypofractionation. *Clinical Oncology*. 2022;34(4):207-209. doi:10.1016/j.clon.2022.01.001
38. Poppe Matthew M, et al. RT CHARM (Alliance A221505) protocol. *ClinicalTrials.gov*. NCT03414970.
39. Vaidya Jayant S, Wenz Frederik, Bulsara Max, et al. Targeted intraoperative radiotherapy versus whole-breast radiotherapy. *Lancet*. 2020;396(10265):91-102. doi:10.1016/S0140-6736(20)30959-4
40. Coles Charlotte E, Kirby Alan M. Boost strategies in hypofractionated breast radiotherapy. *Clinical Oncology*. 2019;31(9):617-620. doi:10.1016/j.clon.2019.05.003
41. Poortmans Philip. Cardiac toxicity in modern breast radiotherapy. *Journal of Clinical Oncology*. 2017;35(11):1171-1174. doi:10.1200/JCO.2016.71.6233
42. Smith Benjamin D, et al. ASTRO guideline: whole-breast irradiation. *Practical Radiation Oncology*. 2018;8(3):145-152.
43. Meattini Ilaria, et al. Practice consensus on breast radiotherapy fractionation. *Lancet Oncology*. 2022;23:e101-e114.
44. Brunt Andrew M. Hypofractionation as standard of care. *Clinical Oncology*. 2023;35:e490-e497.
45. Moran MS, Ho AY. Radiation Therapy for Low-Risk Breast Cancer: Whole, Partial, or None? *Breast J*. 2022;28(6):1052-1059.
46. ASTRO. Whole breast irradiation guideline resource page. Updated 2024.
47. Haviland Joanne S, et al. START trials long-term toxicity insights. *Lancet Oncology*. 2013.
48. Wang Shaitian L, et al. Hypofractionated PMRT outcomes. *Lancet*. 2019.
49. Poppe Matthew M, et al. Hypofractionated PMRT phase II outcomes. *IJROBP*. 2020.
50. Alliance for Clinical Trials in Oncology. RT CHARM trial materials.
51. ClinicalTrials.gov. Hypofractionated radiation after mastectomy with reconstruction. NCT03414970.
52. Darby Sarah C, et al. Long-term cardiac risk after breast radiotherapy. *New England Journal of Medicine*. 2013;368:987-998.