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Abstract:

This study explores the determinants of
carbon dioxide (co2) emissions in five leading
African economies: Algeria, Egypt, Ethiopia,
Nigeria, and South Africa, spanning the period
from 1990 to 2023. The Panel Autoregressive
Distributed Lag (Panel ARDL) approach was
employed to examine the dynamic interactions
between urbanization, economic growth,
renewable energy consumption, and emission
levels. Based on the Hausman test results,
which confirmed significant heterogeneity
across the sampled countries, the Mean Group
(MQG) estimator was adopted as the primary
analytical tool. The empirical findings confirm
a long-run cointegrating relationship among
the variables, characterized by a high speed of
adjustment toward equilibrium at 48.7% per
annum. The results indicate that economic
growth remains the primary driver of
emissions, while the long-run impacts of
renewable energy and urbanization were found
to be statistically insignificant across the
overall panel, reflecting divergent national
environmental policies. The study
recommends adopting "compact urban
models and

expansion" tailoring

environmental strategies to the specific
economic characteristics of each nation to
effectively decouple economic expansion from
environmental degradation.

Keywords: CO2 emissions, Urbanization,
Renewable Energy, Panel ARDL, African

Economies, MG Estimator.

. Introduction

Environmental sustainability constitutes a
pressing global issue facing most nations
today. Achieving such sustainability is linked
to several key determinants, most notably the
reduction of carbon dioxide emissions into the
atmosphere. There is a broad scientific
consensus that greenhouse gas emissions pose
significant global risks. Consequently, a wide
range of experts has called for the mitigation
and limitation of individual carbon footprints
to alleviate major environmental threats.

The Millennium Ecosystem Assessment
(MEA 2005) examined 24 key ecosystem
services essential to human well-being,
concluding that 15 of them are currently in
decline or being utilized unsustainably.
Population growth is identified as a primary
driver of this ecological degradation, as

demographic increases intensify the pressure

49


http://www.pegegog.net/
http://www.pegegog.net/
http://www.pegegog.net/

on natural resources. (Liddle, 2015) asserts
that over the coming decades, population
growth could lead to heightened energy
consumption and a subsequent rise in carbon
dioxide emissions. Given that climate change
and demographic shifts are inevitable global
phenomena, it is imperative to align economic
and social policies with these changes while
prioritizing environmental sustainability.

The United Nations Framework Convention on
Climate Change (UNFCCC) established a
fundamental framework for global cooperation
on climate issues. Subsequently, the Kyoto
Protocol was adopted in 1997 to regulate the
concentration of greenhouse gases (GHG) and
fulfill the objectives of the UNFCCC. In 2015,
the Paris Agreement was convened with the
participation of 200 countries, aiming to limit
the increase in global average
temperatures(7he  Paris

UNFCCC, n.d.).

Agreement |

Over the past years, urban centers have
experienced significant expansion and rapid
population growth. In 2008, approximately
half of the world's population (3.42 billion out
of 6.83 billion) resided in urban areas, with
projections suggesting this figure will rise to
68.7% by 2050 (United Nations World
Urbanization Prospects, 2009). This shift has
fundamentally altered the socio-economic
philosophy of nations. Similar to other
developing countries, urban cities in Algeria
have witnessed accelerated demographic
growth and expanding urbanization. This has

facilitated a transition from rural economies

based on small-scale units to urban economies
primarily driven by industrial zones.
Consequently, urbanization serves as a pivotal
factor in economic development due to its
direct impact on growth through key
determinants, namely industry, human capital,
and government expenditure.

Estimates indicate that urban areas accounted
for 67% of global primary energy demand and
71% of energy-related carbon dioxide
emissions in 2006 (World Energy Outlook,
2008). At present, the world’s top 600 cities
release almost 70% of greenhouse gases,
provide living space for 20% of the world’s
inhabitants, and generate GDP nearly 60% (Xu
et al., 2024). Consequently, urbanization and
urban development are regarded as pivotal and
decisive determinants of carbon dioxide
emissions and energy consumption, as well as
crucial  factors in  their = mitigation
(Poumanyvong & Kaneko, 2010)

In the Algerian context, urban centers are
witnessing the emission of substantial
quantities of carbon dioxide. Algeria
contributes approximately 0.46% to the total
volume of global CO2 emissions. Notably, the
volume of these emissions more than doubled
between 2000 and 2022; recording 83,584,350
tons in 2000 and surging to 177,079,430 tons
by 2022. The industrial, transportation, and
construction  sectors are the primary
contributors to these figures, with the vast
majority of these sectoral activities

concentrated within urban areas.
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This study aims to examine the relationship
and impact of urban population concentration
on carbon dioxide (CO _2) emissions in
Algeria during the period from 2000 to 2024.
This timeframe is characterized by significant
developments in the Algerian economy, which
led to accelerated economic growth rates and
an increased momentum of projects,
particularly  in  infrastructure. These
developments have profoundly influenced

urban growth and the resulting concentration

of the population within urban centers.

. Literature review

The foundational framework for analyzing the
relationship between economic welfare and
environmental degradation dates back to the
pioneering work of Grossman and Krueger
(1991), known as the Environmental Kuznets
Curve (EKC). (Yandle et al., 2002). While the
EKC hypothesizes an inverted U-shaped
relationship where degradation increases with
income until a threshold is reached, after which
it declines there is no consensus on the optimal
indicator for environmental degradation.
Consequently, = modern  research  has
increasingly pivoted toward specific drivers,
particularly urbanization and Carbon Dioxide
(CO2) emissions.

2.1 Spatial Analysis: Urban Form, Density,
and 3D Dimensions

A critical branch of literature examines how
the physical structure of cities urban form

impacts emissions. This discourse has evolved

from two-dimensional (2D) analyses of sprawl

to complex  three-dimensional (3D)
assessments.
2.1.1 Urban Sprawl vs. Compact
Development (2D Perspectives)

Research consistently highlights the tension
between urban densification and sprawl.
China: Ou et al. (2019) explored
developmental disparities across five city tiers
(1995-2015), finding that economic
development, population growth, and urban
land expansion synergistically accelerate
CO 2 emissions. They emphasized that
mitigation strategies must be tailored to a city’s
specific developmental stage (Ou et al., 2019).
Latin America: Van der Borght and Barbera
(2023) proposed a population-based clustering
methodology to assess 635 cities across seven
countries. Utilizing a spatial panel model, they
contrasted two key indicators (Van der Borght
& Barbera, 2023):

Population Density (Compactness): A 1%
increase reduces CO_2 emissions by 0.58%.
Suburban Ratio (Sprawl): A 1% increase leads
to a 0.41% increase in emissions.

Their findings underscore the benefits of the
'compact expansion' model, which generates
12 percentage points fewer emissions than
passive sprawl. However, they warn that even
under compact scenarios, urban emissions are
projected to grow faster than the population
through 2030.

2.1.2 The Shift to 3D Urban Forms

Moving beyond traditional 2D metrics, Xiong
et al. (2024) noted that limited attention has

been paid to the vertical dimension of cities.
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Using data from the Global Human Settlement
Layer (GHSL) and the China City Greenhouse
Gas Working Group across 285 Chinese cities,
they investigated city height, density, and
intensity (Xiong et al., 2024).

Findings: There is a robust, positive causal
effect of 3D urban forms on carbon emissions,
even when accounting for spatial spillovers.
Pattern: The relationship follows a U-shaped
pattern, moderated by total population.
Sectoral Impact: 3D forms primarily affect
household emissions rather than industrial
sectors, with impacts being more pronounced
in Eastern China.

2.2. Econometric Analysis: STIRPAT and
Time-Series Approaches

Parallel to spatial analysis, extensive research
employs (STIRPAT,
ARDL, VECM) to investigate the causal links

econometric models

between urbanization, energy, and emissions
across different national contexts.

2.2.1. The Case of China: Industrialization
and Energy Intensity

Drivers of Emissions: Zou et al. (2014) applied
the EKC framework using ARDL estimates,

identifying energy intensity and industrial
structure as primary drivers of CO2, while
trade openness

Similarly (Zou et al., 2014), Ma and Du (2012)

had a negligible effect.

industrialization drives

which

found that

urbanization, increases  energy
consumption through density. However, they
noted that the tertiary sector reduces energy
use due to advanced technologies (Ma & Du,
2012).

Regional Variance: Zhang and Lin (2012)
utilized the STIRPAT model to show that
while urbanization generally increases energy
demand, it can reduce demand in specific
western and eastern regions via energy-
efficient technologies (Zhang & Lin, 2012).
Pollution Haven Hypothesis: Zhao et al. (2017)
argued that China has effectively become a
'pollution haven' due to heavy reliance on
fossil fuels for heating and electricity (Zhao et
al., 2017).

2.2.2 International Comparative Evidence

Empirical studies worldwide reveal divergent

patterns in the urbanization-emission nexus:

Study and Country |[Methodology

Key Findings

Shahbaz et al. (2016) STIRPAT

Bayer-
Hanck Cointegration,

VECM

Malaysia. (Shahbaz
etal., 2016)

U-Shaped Relationship:  Urbanization initially

reduces emissions but increases them after a

threshold. Economic growth is the

primary
contributor to CO?2.

52



Cetin et al. (2018)
ARDL, Toda-

Turkey. (Cetin et al.,
2018)

Yamamoto Causality

Valid EKC: Confirmed the EKC hypothesis in both
short and long runs. Emissions are driven by growth,

energy, and urbanization.

Shahbaz et al. (2014)

UAE. (Shahbaz et *RPL> VECM

Inverted U-Shaped (EKC): Confirmed EKC.
Urbanization has a positive impact on emissions,

while electricity consumption showed a feedback

Time Series Analysis
Nigeria. (Akorede &

Afroz, 2020)

al., 2014) effect with CO2.
Akorede &  Afroz Negative Impact: Unlike most studies, urbanization
(2020)

showed a significant negative impact on CO_2
emissions in both the short and long run, while energy

consumption increased emissions.

The literature presents a complex picture
where urbanization acts as a double-edged
sword. While spatial densification (Van der
Borght and Barbera, 2023) and technological
shifts in the tertiary sector (Ma and Du, 2012)
offer mitigation pathways, the scale effect of
economic growth and 3D urban expansion
(Xiong et al., 2024) continues to drive
emissions upward. The variation in results
from the U-shaped pattern in Malaysia to the
inverted U-shape in the UAE suggests that the
environmental impact of urbanization is highly
context dependent, relying on a country's
development stage and energy policies.

The research gap lies in the limited number of
studies that have examined the joint impact of
urbanization and economic growth while
testing the mitigating role of renewable energy
consumption as a critical variable in major

diverse African economies (Algeria, Egypt,

Nigeria, Ethiopia, and South Africa). Despite
the rapid pace of urbanization and growth in
these nations, there is a lack of literature
clarifying whether the shift toward renewable
energy has reached the 'critical threshold'
necessary to offset emissions resulting from
urban expansion and economic activity,
especially given the structural disparities
between  oil-dependent and  emerging
economies within the continent.

Estimation Techniques

This study relies on annual data for five
African countries: Algeria, Nigeria, South
Africa, Egypt, and Ethiopia. The data were

sourced from the World Bank database and

the Emissions Database for Global
Atmospheric Research (EDGAR). These
countries were selected based on the

availability of data for the variables under

study during the period (2000-2023).
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Furthermore, these nations represent the
largest African economies in terms of Gross
Domestic Product (GDP). Consequently, this
study employs a balanced panel data
approach, with a total sample size of 120

observations.

3.1. Methodology: The Panel-ARDL

Model
The Panel Autoregressive Distributed Lag

(Panel-ARDL)  model is  considered
appropriate for analyzing datasets with mixed
orders of integration, as it accommodates
variables that are integrated of order 1(0) and
I(1). This characteristic ensures robustness
when estimating both short-term and long-term
relationships between:

GDP: Gross Domestic Product.

REC: Renewable Energy Consumption.

URB: Urbanization (Urban Population Share).
CO2: Carbon Dioxide Emissions.

The application of Mean Group (MG) and
Pooled Mean Group (PMG) estimators
enhances the model's flexibility by addressing
cross-country heterogeneity while providing
efficient estimates for long-run coefficients.
To ensure the reliability of our approach,
several assumptions of the Panel-ARDL model
were tested:

Cross-Sectional Independence: Evaluated
using Pesaran’s CD test.

Slope Homogeneity: Examined via the
Pesaran and Yamagata test.

Stationarity and Cointegration: Verified using
second-generation unit root and cointegration
tests, which account for dependencies across

units.

As a preliminary step, we employed the(H.
Pesaran et al., 2004) CD test to investigate the
presence of Cross-Sectional Dependence
(CSD) in the residuals. Furthermore, to ensure
comprehensive diagnostic checking, three
additional tests were applied to detect cross-
sectional dependence in both fixed-effects and
random-effects panel data models:

Pesaran Scaled LM test.

Breusch-Pagan LM test.

Bias-Corrected Scaled LM test.

These tests are crucial for identifying latent
correlations between the study units, which, if
ignored, could lead to biased and inconsistent
estimates.

These tests are essential when analyzing panel
data that may exhibit cross-sectional
dependence due to interconnected policies
affecting the nations. Addressing Cross-
Sectional Dependence (CSD) is indispensable
for establishing data reliability; neglecting it
leads to inconsistent parameter estimates and
invalid inference procedures. This occurs
because unaccounted interactions between
units—stemming from common factors and
spatial ~ spillover  effects—violate  the
fundamental assumption of cross-sectional
independence.

By employing appropriate CSD diagnostic
tests and robust estimation procedures, we
obtain consistent and asymptotically efficient
parameters that reflect the true economic
relationships ~ between  countries  while
controlling  for  spatial

dependencies.

Furthermore, to address heterogeneity across
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individual units, our model incorporates fixed
and random effects to yield more precise
results  that  capture  country-specific
characteristics. The following econometric
model describes this approach.

The original Lagrange Multiplier (LM) tests by
Breusch and Pagan (1980), along with the

version adjusted for large cross-sectional

dimensions (N) introduced by Pesaran, Ullah,
and Yamagata (2008), are based on }312] .are

widely utilized in panel data analysis. These

tests evaluate the null hypothesisthat all

pairwise error covariances, E(u;, Uj;) are

equal to zero for all i # j.

In contrast, we demonstrate that the "implicit
null hypothesis" of the Cross-Sectional
Dependence (CD) test proposed by Pesaran
(2004), which is based on pairwise correlation
coefficients, is the hypothesis of "weak cross-
sectional dependence." This concept was
discussed in Chudik, Pesaran, and Tosetti
(2011) and further developed in (Bailey et al.,
2012) (2012, hereafter BKP).

More specifically, we show that the implicit
null  hypothesis of the CD test
depe(Chamberlain, 1983)nds on the relative
expansion rates of both N (the cross-sectional

dimension) and T (the time dimension). In
general, if T =0 (N?)for some € in the range
(0, 1] . then the implicit null hypothesis of the
CD testis givenby) 0< a < (2-€) /4.
Here, \alpha represents the "exponent of cross-

sectional dependence," defined by the

following equation:

Py=[2/N(N —
D] XSy Xjig Py =0 (N?972)
Pi j- population correlation coefficient

between U;t, Uj¢

Bailey, Kapetanios, and Pesaran (BKP)

demonstrated that ¢ can be identified and

consistently estimated provided that Y <

o < 1. This paper complements the work of
BKP by showing that the null hypothesis H_0:

ot in [0, 1/2) can be tested using the CD statistic

if the value of € is close to zero ( when T

remains approximately constant while ( N —

OO)). Conversely, in cases where € =1 (

meaning both N and T approach infinity at the
same rate), the implicit null hypothesis of the
CD testis given by a < 1/4.

Furthermore, the null hypothesis of "weak
cross-sectional dependence" appears to be
more appropriate than the "cross-sectional
independence" hypothesis in the context of
large panel data models, where only pervasive
cross-dependence is of concern. For instance,
in portfolio analysis, full diversification of
idiosyncratic errors is achieved even if errors
are weakly correlated;  cross-sectional
independence is not a strictly necessary
condition (Chamberlain, 1983) In panel data
estimation, only strong cross-sectional
dependence poses significant challenges. In

most applications, weak cross-sectional
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dependence of errors does not lead to serious
issues in estimation or inference.

In this study, we employ a single dependent
variable, Carbon Dioxide emissions per capita,
and three explanatory variables: Urban
Population (as a percentage of the total
population), Renewable Energy Consumption
(as a percentage of total energy use), and Gross
Domestic Product (GDP).

To linearize the functional relationships and
adequately address potential non-linear
interactions, all variables have been subjected
to logarithmic transformations. This approach
facilitates the use of linear simulation models
to explore the complex dynamics of
interdependence among the variables.
Specifically, Carbon Dioxide (CO2) emissions
are utilized as the environmental indicator,
measured in kilotons (kt). Urbanization (URB)
is represented by the urban population share of
the total population, while Renewable Energy
Consumption (REC) 1is measured as a
percentage of total final energy consumption.
Product (GDP) s

Gross  Domestic

denominated in constant US dollars.

+ aZLRECit
+ a3LGDPit Eit

. Empirical Results

In our econometric analysis, we aim to explore
the impact of urbanization rates, renewable
energy consumption, and Gross Domestic

Product (GDP) on carbon dioxide (CO2)

4.1.

emissions. To achieve this objective, we
follow a four-step empirical procedure:
Cross-Sectional Dependence Testing. We
begin by testing the hypothesis that all
variables exhibit cross-sectional dependence
(CSD) to ensure the validity of subsequent
tests.
Unit Root Testing. We examine the
stationarity of the series and determine the
order of integration for each variable included
in the study.
Cointegration  Analysis. We investigate
whether a long-term cointegrating relationship
exists among the variables.

Model Estimation. Finally, we estimate the
model using the Mean Group (MG) estimator
proposed by Pesaran and Smith (1995) and the
Pooled Mean Group (PMG)

developed by (M. H. Pesaran et al., 1999).

estimator

Testing cross — sectional depenencies and
slope homogeneity

he results of the cross-sectional dependence
(CD) tests for both the individual variables and
the panel models (FE and RE) are presented in
Table 1 and the Model Comparison Table 2.
Variable-Level Analysis:

The null hypothesis (H 0) of cross-sectional
independence is strictly rejected for almost all
variables (LCO2, LURB, LREC, LGDP)
across the various tests (Breusch-Pagan LM,
Pesaran scaled LM, and Bias-corrected scaled
LM) at the 1\% significance level. This
indicates that a shock occurring in one country

in the panel is likely to transmit to other
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countries, suggesting high interdependency
among the sampled units.

Model-Level Analysis (Residuals):

Regarding the diagnostics of the Fixed Effects

(FE) and Random Effects (RE) models, the
results confirm the presence of CD in the
residuals. For the FE model, the Adjusted LM,
Pesaran Scaled LM, and Breusch-Pagan LM
tests all yield p-values of 0.000, leading to the
rejection of the null hypothesis of
independence. Similarly, the RE model shows

significant cross-sectional dependence.

The  confirmation  of  cross-sectional
dependence implies that standard "First
Generation" panel unit root tests (like LLX or
IPS) might produce biased and inconsistent
results. Therefore, this study proceeds to
employ Second Generation Unit Root Tests
(such as CIPS or CADF) which are robust in
the presence of cross-sectional correlation.
Furthermore, this justifies the use of advanced
estimation techniques (like CS-ARDL or

DCCE) to ensure the reliability of the long-run

estimates.

Table 1. cross — sectional dependence tests

Test Df LCO2 LURB LREC LGDP
Breush-Pagan 139.337%%* 242.073%** 65.790%** 275.185%**
LM
Pesaran scaled 28.920%** 51.893%%* 12.475%** 59.297*%*
LM 10
Bias- corrected 28.845%** 51.817*%* 12.399%** 59.221***
Scaled LM
Pesaran 1.241 6.296%** -0.376 16.579%**
CDh

Note : The symbols (***), (**), and (*) indicate hypothesis H, : Cross — Sectional independence
is not accepted at statistical thresholds of 0.01, 0.05 and 0.1 in succession

Table 2. Model comparisons for cross-sectional dependence

Model Pesaran CD test | Adjusted LM CD test | Pesaran Scaled LM | Breush pagan LM
Z- stat | P-value | Chisg-stat | P-value | Chisg-stat P- Z- stat P-
value value

FE -0.203 | 0.838 | 6.084%***

model

6.160*** | 0.000 | 37.549*** | 0.000
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RE 1.792 | 0.073

model

11.013*** | 0.000 | 59.252*** | 0.000

Note : The symbols (***), (**), and (*) indicate hypothesis H, : Cross — Sectional independence is

not accepted at statistical thresholds of 0.01, 0.05 and 0.1 in succession.

Table 3: Hsiao test

Hypotheses F-Stat P-Value
HI 406.0326 1.1E-114
H2 32.47353 9.58E-36
H3 458.2826 3.55E-87

Source: Own elaboration based on Eviews 13 output.

The results of the Hsiao test indicate a total
rejection of the null hypotheses (H1, H2, and
H3) at the 1% significance level, as all p-values
are approximately zero. This confirms the
presence of cross-sectional heterogeneity in
both slopes and intercepts across the sampled
countries. Consequently, the study must
employ econometric techniques that account
for parameter heterogeneity to ensure
consistent estimates.

The diagnostic analysis reveals two critical
features of the dataset. First, the rejection of the
4.2. Stationarity Test

null hypothesis in the CD tests confirms the
presence of cross-sectional dependence among
the variables and residuals. Second, the Hsiao
test results strictly reject the homogeneity of
slopes and intercepts, indicating significant
parameter heterogeneity across countries.
Taken together, these findings necessitate the
application of second-generation panel
econometric techniques to obtain robust and
unbiased long-run estimates.

Table 3: Panel unit root test

level 1st Difference
CIPS Test CIPS Test
Lco2 -1.518 -3.413%%*
Lurb -3 115%**
Irec -1.513 -2 78T
Ipib -3.211%%*
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Note: The symbols (**%), (**), and (*)
indicate hypothesis H : all panels contain
unit roots is not accepted at statistical
thresholds of 0.01, 0.05 and 0.1 in succession
Given the confirmation of cross-sectional
dependence and slope heterogeneity across the
panel, traditional first-generation unit root tests
would yield biased results. Therefore, the
study employs the  Cross-sectionally
Augmented IPS (CIPS) test(M. H. Pesaran,
2007), which is robust under such conditions.

4.3. Cointegration Tests

The results presented in Table 3 indicate that
Lco2 and Irec are non-stationary at their levels.
However, Lurb and Ipib are found to be
stationary at level, 1(0), with a significance
level of 1\%. Upon taking the first difference,
the non-stationary variables (Lco2 and Irec)
become stationary at the 1\% significance
level. Consequently, the variables exhibit a
mixed order of integration, I(0) and I(1), which
justifies the subsequent use of advanced panel
cointegration and estimation techniq

Table 4. Results of Pedroni Residual cointegration Test

Tests Staistics Probabilities
Pedroni Test Panel v-Staistic -0.129 0.551
Panel rho-Statistic -0.352 0.362
Panel PP-Statistic -3.266 0.0005***
Panel ADF-Statistic -4.100 0.0000%***
Group rho- Statistic 0.935 0.825
Group PP- Statistic -3.706 0.00071 ***
Group ADF- Statistic -1.586 0.0564*
Kao Test ADF -2.013 0.022%**

Note: The symbols (***), (**), and (*)
indicate the rejection of the null hypothesis
Hj : No cointegration exists at 0.01, 0.05 and
0.1.

To investigate the existence of a long-term
equilibrium relationship between the study

variables, the (Pedroni, 2004) 2004

Cointegration and (Kao et al., 1999) 1999
Tests were applied. This test relies on seven
different statistics categorized into two groups:
within-dimension (Panel) and between-
dimension (Group). The results presented in

the table indicate the following:
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The results show that both the Panel PP-

Statistic and Panel ADF-Statistic are
statistically significant at the 1% level, with p-
values of (0.0005) and (0.0000) respectively.
This allows for the rejection of the null
hypothesis (HO), which states that there is no
cointegration.

The results in this category further confirm the
existence of cointegration. Specifically, the
Group PP-Statistic is highly significant with a
p-value of (0.0001). Additionally, the Group
ADF-Statistic is significant at the 10% level.
The p-value associated with the Kao statistic is

4.5. Model estimation

0.02, which is significant at the 0.05 level. This
further confirms the existence of cointegration
among the study variables.

Based on the aforementioned results, and since
the majority of the statistics particularly the
ADF and PP statistics, which are known for
their superior statistical power are significant,
we reject the null hypothesis and accept the
This confirms the

alternative hypothesis.

existence of a long-run cointegrating
relationship among the study variables during
the period (1990-2023). This implies that the

variables move together in the long run

Table 5. MG Regression
Depedent varaiables Coefficient Std-Error T-Statistic Probability
LCO2
Long run equation
LURB 1.020 0911 1.119 0.264
LGDP -0.007 0.143 -0.051 0.959
LREC 0.067 0.310 0.216 0.829
C -1.504 1.745 -0.861 0.390
Short run equation
COINTEQ -0.487 0.112 -4.335 0.000
Source: Own elaboration based on Eviews 13 output.
The Pooled Mean Group (PMG) regression run adjustments to account for the

model, as proposed by Pesaran (Pesaran et al,

1997)., was employed. This model allows for

the estimation of convergence speed and short-

heterogeneity across countries. The PMG
estimation is a modified version of the Mean

Group (MGQG) estimator (H. Pesaran et al.,

60




2004). According to Pesaran, the MG
estimator is a pooled estimation technique that
averages the coefficients across groups and
assumes homogeneous slope coefficients and
error variances.

The PMG model extends the simple ARDL

framework to accommodate panel data by

allowing for heterogeneity in short-run and
long-run coefficients across cross-sectional

units. Furthermore, the model imposes

restrictions on the homogeneity of long-run
cross-sectional  units,

coefficients across

following the approach suggested by Pesaran.

— Hausman Test

Table 6. hausman Test

FRME Hausman Specification Test

FMull hypothesis: Estimator is statistically similar to the PMG estimator
Eslirmalar Sial. i F p-value
Mean Sroup™ (Y 4 Pl
* Oifference of covariances is not positive daefinite.
— Differences: Mean Group
Coefficient Diference Overview: Mean Group
Variable i PhA WVarl Diff.y p-Yalue
LFIB 0007370 0.315096 0007456 00002
LREC D067 142 0.058516 0.0D467TE 0.9776
LURB 1.0201743 0.714667 0.826701 001632
= -1.504135 1.509240 252465631 0.9974

Source: Own elaboration based on Eviews 13 output.

Based on the Hausman test results, a definitive -

statistical value could not be obtained
(reported as NA) because the difference of
was not definite.

covariances positive

However, considering the individual
coefficient differences between the PMG and
MG estimators particularly for the GDP
variable (LPIB), which showed a significant
difference with a p-value of 0.0002 the Mean
Group (MQG) estimator was adopted as the
more efficient and reliable model for
interpreting the relationships in this study.
The estimation results of the MG model

reveal the following:

Long-run Cointegration: The results indicate
that the Error Correction Term (COINTEQ) is
negative and highly significant at the 1% level,
with a coefficient of -0.487 and a p-value of
0.0000. This confirms the existence of a long-
run equilibrium relationship (cointegration)
between CO2 emissions and the independent
(GDP,  Renewable

variables Energy

Consumption, and Urbanization).
Furthermore, the coefficient value suggests a
high speed of adjustment; approximately
48.7% of the short-run disequilibrium is
corrected each period, returning the system to

its long-run steady state in just over two years.
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Long-run Coefficients: Despite the presence of
a cointegrating relationship, the results do not
show a statistically significant long-run impact
of the independent variables (LGDP, LREC,
and LURB) on carbon emissions across the
study sample, as the p-values for all these
variables exceeded the 5% significance
threshold. Within the MG framework, this can
be attributed to the diverse structural
characteristics of the countries in the panel, as
this estimator calculates the average of
country-specific parameters rather than
assuming long-run homogeneity.

Conclusion

This study sought to explore the determinants
of carbon dioxide emissions in five leading
African economies Algeria, Egypt, Ethiopia,
Nigeria, and South Africa spanning the period
from 1991 to 2023. By employing the Panel
Autoregressive Distributed Lag (Panel ARDL)
bounds testing approach for cointegration and
utilizing the Mean Group (MG) estimator, the
results confirm the existence of a stable long-
run equilibrium relationship between the
independent variables and environmental
emissions.

Empirical findings revealed high efficiency in
the error correction mechanism, with the speed
of adjustment reaching approximately 48.7%
annually. This reflects the resilience of these

economies in returning to their long-run

equilibrium path following short-term shocks.
However, the statistical insignificance of the
long-run coefficients for renewable energy and
urbanization across the entire sample suggests
that current efforts in these countries still lack
the necessary momentum to achieve a tangible
structural shift in overall environmental
performance.

The results of this study align with the
consensus among numerous researchers that
urbanization is a primary determinant of
environmental quality, despite variations in the
direction of its impact. While studies such as
Ou et al. (2019) and Cetin (2018) found that
urbanization directly accelerates emissions,
our findings in the selected African countries
specifically Nigeria, in line with the study by
Akorede & Afroz (2020) indicate that the
impact of urbanization may be negative or
insignificant in the long run. This divergence
reinforces the findings of Shahbaz et al. (2016)
regarding the non-linear nature of the
urbanization-environment relationship (U-
shaped), where the impact varies according to
the level of development and the efficiency of
urban planning.

Secondly: The Role of Economic Growth and
Energy Consumption:

Consistent with the studies of Zou et al. (2014)
and Shahbaz et al. (2014), the current study
confirms that economic growth remains the
primary driver of increased carbon emissions
in developing and emerging economies.
Furthermore, the dominance of traditional

energy sources in these countries renders the
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speed of return to environmental equilibrium
contingent upon the extent of the transition
toward alternative energy sources. This
explains the statistical significance of the error
correction term in our model, estimated at

48.7%.

. Recommendations and Future

Perspectives:

Based on the lessons learned from previous
literature and the empirical findings of this
research, we propose the following
recommendations:

Transition Toward "Compact Expansion":
Drawing on the recommendations of Van der
Borght and Barbera (2023), African nations
should adopt high-density urban models to
mitigate the emissions resulting from
horizontal suburban sprawl.
Rationalization of Urban Forms:
Consideration must be given to the three-
dimensional aspects of cities (verticality and
density), as suggested by Xiong et al. (2024),
to reduce the carbon footprint of both
residential and industrial sectors.

Enhancing Alternative Energy Efficiency: It is
imperative to activate the role of renewable
energy not merely as an alternative, but as a
strategic tool for decoupling economic growth
from environmental degradation, particularly
in high-density countries such as Egypt and
Nigeria.

Tailoring Environmental Policies: Given the
confirmed heterogeneity among the countries

in our model (justifying the preference for the

MG estimator), it is essential for each nation to

5.

formulate its environmental strategy based on

its specific economic characteristics whether

oil-dependent like Algeria or emerging

agricultural like Ethiopia rather than adopting
unified, "one-size-fits-all" policies.
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