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Abstract: 

      This study explores the determinants of 

carbon dioxide (co2) emissions in five leading 

African economies: Algeria, Egypt, Ethiopia, 

Nigeria, and South Africa, spanning the period 

from 1990 to 2023. The Panel Autoregressive 

Distributed Lag (Panel ARDL) approach was 

employed to examine the dynamic interactions 

between urbanization, economic growth, 

renewable energy consumption, and emission 

levels. Based on the Hausman test results, 

which confirmed significant heterogeneity 

across the sampled countries, the Mean Group 

(MG) estimator was adopted as the primary 

analytical tool. The empirical findings confirm 

a long-run cointegrating relationship among 

the variables, characterized by a high speed of 

adjustment toward equilibrium at 48.7% per 

annum. The results indicate that economic 

growth remains the primary driver of 

emissions, while the long-run impacts of 

renewable energy and urbanization were found 

to be statistically insignificant across the 

overall panel, reflecting divergent national 

environmental policies. The study 

recommends adopting "compact urban 

expansion" models and tailoring 

environmental strategies to the specific 

economic characteristics of each nation to 

effectively decouple economic expansion from 

environmental degradation. 

Keywords: CO2  emissions, Urbanization, 

Renewable Energy, Panel ARDL, African 

Economies, MG Estimator. 

1. Introduction 

Environmental sustainability constitutes a 

pressing global issue facing most nations 

today. Achieving such sustainability is linked 

to several key determinants, most notably the 

reduction of carbon dioxide emissions into the 

atmosphere. There is a broad scientific 

consensus that greenhouse gas emissions pose 

significant global risks. Consequently, a wide 

range of experts has called for the mitigation 

and limitation of individual carbon footprints 

to alleviate major environmental threats. 

The Millennium Ecosystem Assessment 

(MEA 2005) examined 24 key ecosystem 

services essential to human well-being, 

concluding that 15 of them are currently in 

decline or being utilized unsustainably. 

Population growth is identified as a primary 

driver of this ecological degradation, as 

demographic increases intensify the pressure 
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on natural resources. (Liddle, 2015) asserts 

that over the coming decades, population 

growth could lead to heightened energy 

consumption and a subsequent rise in carbon 

dioxide emissions. Given that climate change 

and demographic shifts are inevitable global 

phenomena, it is imperative to align economic 

and social policies with these changes while 

prioritizing environmental sustainability. 

The United Nations Framework Convention on 

Climate Change (UNFCCC) established a 

fundamental framework for global cooperation 

on climate issues. Subsequently, the Kyoto 

Protocol was adopted in 1997 to regulate the 

concentration of greenhouse gases (GHG) and 

fulfill the objectives of the UNFCCC. In 2015, 

the Paris Agreement was convened with the 

participation of 200 countries, aiming to limit 

the increase in global average 

temperatures(The Paris Agreement | 

UNFCCC, n.d.). 

Over the past years, urban centers have 

experienced significant expansion and rapid 

population growth. In 2008, approximately 

half of the world's population (3.42 billion out 

of 6.83 billion) resided in urban areas, with 

projections suggesting this figure will rise to 

68.7% by 2050 (United Nations World 

Urbanization Prospects, 2009). This shift has 

fundamentally altered the socio-economic 

philosophy of nations. Similar to other 

developing countries, urban cities in Algeria 

have witnessed accelerated demographic 

growth and expanding urbanization. This has 

facilitated a transition from rural economies 

based on small-scale units to urban economies 

primarily driven by industrial zones. 

Consequently, urbanization serves as a pivotal 

factor in economic development due to its 

direct impact on growth through key 

determinants, namely industry, human capital, 

and government expenditure. 

Estimates indicate that urban areas accounted 

for 67% of global primary energy demand and 

71% of energy-related carbon dioxide 

emissions in 2006 (World Energy Outlook, 

2008). At present, the world’s top 600 cities 

release almost 70% of greenhouse gases, 

provide living space for 20% of the world’s 

inhabitants, and generate GDP nearly 60% (Xu 

et al., 2024). Consequently, urbanization and 

urban development are regarded as pivotal and 

decisive determinants of carbon dioxide 

emissions and energy consumption, as well as 

crucial factors in their mitigation 

(Poumanyvong & Kaneko, 2010)  

In the Algerian context, urban centers are 

witnessing the emission of substantial 

quantities of carbon dioxide. Algeria 

contributes approximately 0.46% to the total 

volume of global CO2 emissions. Notably, the 

volume of these emissions more than doubled 

between 2000 and 2022; recording 83,584,350 

tons in 2000 and surging to 177,079,430 tons 

by 2022. The industrial, transportation, and 

construction sectors are the primary 

contributors to these figures, with the vast 

majority of these sectoral activities 

concentrated within urban areas. 
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This study aims to examine the relationship 

and impact of urban population concentration 

on carbon dioxide (CO_2) emissions in 

Algeria during the period from 2000 to 2024. 

This timeframe is characterized by significant 

developments in the Algerian economy, which 

led to accelerated economic growth rates and 

an increased momentum of projects, 

particularly in infrastructure. These 

developments have profoundly influenced 

urban growth and the resulting concentration 

of the population within urban centers. 

2. Literature review 

The foundational framework for analyzing the 

relationship between economic welfare and 

environmental degradation dates back to the 

pioneering work of Grossman and Krueger 

(1991), known as the Environmental Kuznets 

Curve (EKC). (Yandle et al., 2002). While the 

EKC hypothesizes an inverted U-shaped 

relationship where degradation increases with 

income until a threshold is reached, after which 

it declines there is no consensus on the optimal 

indicator for environmental degradation. 

Consequently, modern research has 

increasingly pivoted toward specific drivers, 

particularly urbanization and Carbon Dioxide 

(CO2) emissions. 

2.1 Spatial Analysis: Urban Form, Density, 

and 3D Dimensions 

A critical branch of literature examines how 

the physical structure of cities urban form 

impacts emissions. This discourse has evolved 

from two-dimensional (2D) analyses of sprawl 

to complex three-dimensional (3D) 

assessments. 

2.1.1 Urban Sprawl vs. Compact 

Development (2D Perspectives) 

Research consistently highlights the tension 

between urban densification and sprawl. 

• China: Ou et al. (2019) explored 

developmental disparities across five city tiers 

(1995–2015), finding that economic 

development, population growth, and urban 

land expansion synergistically accelerate 

CO_2 emissions. They emphasized that 

mitigation strategies must be tailored to a city’s 

specific developmental stage (Ou et al., 2019). 

• Latin America: Van der Borght and Barbera 

(2023) proposed a population-based clustering 

methodology to assess 635 cities across seven 

countries. Utilizing a spatial panel model, they 

contrasted two key indicators (Van der Borght 

& Barbera, 2023):  

- Population Density (Compactness): A 1% 

increase reduces CO_2 emissions by 0.58%. 

- Suburban Ratio (Sprawl): A 1% increase leads 

to a 0.41% increase in emissions. 

Their findings underscore the benefits of the 

'compact expansion' model, which generates 

12 percentage points fewer emissions than 

passive sprawl. However, they warn that even 

under compact scenarios, urban emissions are 

projected to grow faster than the population 

through 2030. 

2.1.2 The Shift to 3D Urban Forms 

Moving beyond traditional 2D metrics, Xiong 

et al. (2024) noted that limited attention has 

been paid to the vertical dimension of cities. 
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Using data from the Global Human Settlement 

Layer (GHSL) and the China City Greenhouse 

Gas Working Group across 285 Chinese cities, 

they investigated city height, density, and 

intensity (Xiong et al., 2024).  

• Findings: There is a robust, positive causal 

effect of 3D urban forms on carbon emissions, 

even when accounting for spatial spillovers. 

• Pattern: The relationship follows a U-shaped 

pattern, moderated by total population. 

• Sectoral Impact: 3D forms primarily affect 

household emissions rather than industrial 

sectors, with impacts being more pronounced 

in Eastern China. 

2.2. Econometric Analysis: STIRPAT and 

Time-Series Approaches 

Parallel to spatial analysis, extensive research 

employs econometric models (STIRPAT, 

ARDL, VECM) to investigate the causal links 

between urbanization, energy, and emissions 

across different national contexts.  

2.2.1. The Case of China: Industrialization 

and Energy Intensity 

• Drivers of Emissions: Zou et al. (2014) applied 

the EKC framework using ARDL estimates, 

identifying energy intensity and industrial 

structure as primary drivers of CO2, while 

trade openness had a negligible effect. 

Similarly (Zou et al., 2014), Ma and Du (2012) 

found that industrialization drives 

urbanization, which increases energy 

consumption through density. However, they 

noted that the tertiary sector reduces energy 

use due to advanced technologies (Ma & Du, 

2012). 

• Regional Variance: Zhang and Lin (2012) 

utilized the STIRPAT model to show that 

while urbanization generally increases energy 

demand, it can reduce demand in specific 

western and eastern regions via energy-

efficient technologies (Zhang & Lin, 2012). 

• Pollution Haven Hypothesis: Zhao et al. (2017) 

argued that China has effectively become a 

'pollution haven' due to heavy reliance on 

fossil fuels for heating and electricity (Zhao et 

al., 2017). 

2.2.2 International Comparative Evidence 

Empirical studies worldwide reveal divergent 

patterns in the urbanization-emission nexus: 

Study and Country Methodology Key Findings 

Shahbaz et al. (2016) 

Malaysia. (Shahbaz 

et al., 2016) 

STIRPAT, Bayer-

Hanck Cointegration, 

VECM 

U-Shaped Relationship: Urbanization initially 

reduces emissions but increases them after a 

threshold. Economic growth is the primary 

contributor to CO2. 
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Cetin et al. (2018) 

Turkey. (Cetin et al., 

2018) 

ARDL, Toda-

Yamamoto Causality 

Valid EKC: Confirmed the EKC hypothesis in both 

short and long runs. Emissions are driven by growth, 

energy, and urbanization. 

Shahbaz et al. (2014) 

UAE. (Shahbaz et 

al., 2014) 

ARDL, VECM 

Inverted U-Shaped (EKC): Confirmed EKC. 

Urbanization has a positive impact on emissions, 

while electricity consumption showed a feedback 

effect with CO2. 

Akorede & Afroz 

(2020) 

Nigeria. (Akorede & 

Afroz, 2020) 

Time Series Analysis 

Negative Impact: Unlike most studies, urbanization 

showed a significant negative impact on CO_2 

emissions in both the short and long run, while energy 

consumption increased emissions. 

The literature presents a complex picture 

where urbanization acts as a double-edged 

sword. While spatial densification (Van der 

Borght and Barbera, 2023) and technological 

shifts in the tertiary sector (Ma and Du, 2012) 

offer mitigation pathways, the scale effect of 

economic growth and 3D urban expansion 

(Xiong et al., 2024) continues to drive 

emissions upward. The variation in results 

from the U-shaped pattern in Malaysia to the 

inverted U-shape in the UAE suggests that the 

environmental impact of urbanization is highly 

context dependent, relying on a country's 

development stage and energy policies.  

The research gap lies in the limited number of 

studies that have examined the joint impact of 

urbanization and economic growth while 

testing the mitigating role of renewable energy 

consumption as a critical variable in major 

diverse African economies (Algeria, Egypt, 

Nigeria, Ethiopia, and South Africa). Despite 

the rapid pace of urbanization and growth in 

these nations, there is a lack of literature 

clarifying whether the shift toward renewable 

energy has reached the 'critical threshold' 

necessary to offset emissions resulting from 

urban expansion and economic activity, 

especially given the structural disparities 

between oil-dependent and emerging 

economies within the continent. 

 Estimation Techniques 

This study relies on annual data for five 

African countries: Algeria, Nigeria, South 

Africa, Egypt, and Ethiopia. The data were 

sourced from the World Bank database and 

the Emissions Database for Global 

Atmospheric Research (EDGAR). These 

countries were selected based on the 

availability of data for the variables under 

study during the period (2000–2023). 
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Furthermore, these nations represent the 

largest African economies in terms of Gross 

Domestic Product (GDP). Consequently, this 

study employs a balanced panel data 

approach, with a total sample size of 120 

observations. 

3.1.    Methodology: The Panel-ARDL 

Model 
The Panel Autoregressive Distributed Lag 

(Panel-ARDL) model is considered 

appropriate for analyzing datasets with mixed 

orders of integration, as it accommodates 

variables that are integrated of order I(0) and 

I(1). This characteristic ensures robustness 

when estimating both short-term and long-term 

relationships between: 

• GDP: Gross Domestic Product. 

• REC: Renewable Energy Consumption. 

• URB: Urbanization (Urban Population Share). 

• CO2: Carbon Dioxide Emissions. 

The application of Mean Group (MG) and 

Pooled Mean Group (PMG) estimators 

enhances the model's flexibility by addressing 

cross-country heterogeneity while providing 

efficient estimates for long-run coefficients. 

To ensure the reliability of our approach, 

several assumptions of the Panel-ARDL model 

were tested: 

• Cross-Sectional Independence: Evaluated 

using Pesaran’s CD test. 

• Slope Homogeneity: Examined via the 

Pesaran and Yamagata test. 

• Stationarity and Cointegration: Verified using 

second-generation unit root and cointegration 

tests, which account for dependencies across 

units. 

As a preliminary step, we employed the(H. 

Pesaran et al., 2004) CD test to investigate the 

presence of Cross-Sectional Dependence 

(CSD) in the residuals. Furthermore, to ensure 

comprehensive diagnostic checking, three 

additional tests were applied to detect cross-

sectional dependence in both fixed-effects and 

random-effects panel data models: 

• Pesaran Scaled LM test. 

• Breusch-Pagan LM test. 

• Bias-Corrected Scaled LM test. 

These tests are crucial for identifying latent 

correlations between the study units, which, if 

ignored, could lead to biased and inconsistent 

estimates. 

These tests are essential when analyzing panel 

data that may exhibit cross-sectional 

dependence due to interconnected policies 

affecting the nations. Addressing Cross-

Sectional Dependence (CSD) is indispensable 

for establishing data reliability; neglecting it 

leads to inconsistent parameter estimates and 

invalid inference procedures. This occurs 

because unaccounted interactions between 

units—stemming from common factors and 

spatial spillover effects—violate the 

fundamental assumption of cross-sectional 

independence. 

By employing appropriate CSD diagnostic 

tests and robust estimation procedures, we 

obtain consistent and asymptotically efficient 

parameters that reflect the true economic 

relationships between countries while 

controlling for spatial dependencies. 

Furthermore, to address heterogeneity across 
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individual units, our model incorporates fixed 

and random effects to yield more precise 

results that capture country-specific 

characteristics. The following econometric 

model describes this approach. 

The original Lagrange Multiplier (LM) tests by 

Breusch and Pagan (1980), along with the 

version adjusted for large cross-sectional 

dimensions (N) introduced by Pesaran, Ullah, 

and Yamagata (2008), are based on 𝑝̇̂𝑖𝑗
2   .are 

widely utilized in panel data analysis. These 

tests evaluate the null hypothesisthat all 

pairwise error covariances, E(𝑢𝑖𝑡 , 𝑢𝑗𝑡) are 

equal to zero for all i ≠ j. 

In contrast, we demonstrate that the "implicit 

null hypothesis" of the Cross-Sectional 

Dependence (CD) test proposed by Pesaran 

(2004), which is based on pairwise correlation 

coefficients, is the hypothesis of "weak cross-

sectional dependence." This concept was 

discussed in Chudik, Pesaran, and Tosetti 

(2011) and further developed in (Bailey et al., 

2012) (2012, hereafter BKP). 

More specifically, we show that the implicit 

null hypothesis of the CD test 

depe(Chamberlain, 1983)nds on the relative 

expansion rates of both N (the cross-sectional 

dimension) and T (the time dimension). In 

general, if    T = 0 (𝑁𝜀) for some 𝜀 in the range 

(0, 1] . then the implicit null hypothesis of the 

CD test is given by) 0≤ 𝛼   <   ( 2 - 𝜖  ) /4  . 

Here, \alpha represents the "exponent of cross-

sectional dependence," defined by the 

following equation: 

𝑃̅𝑁= [2/𝑁(𝑁 −

1)] ∑ ∑ 𝑃𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1  = 0 ( 𝑁2𝛼−2) 

𝑃𝑖𝑗 : population correlation coefficient 

between 𝑢𝑖𝑡 , 𝑢𝑗𝑡 

Bailey, Kapetanios, and Pesaran (BKP) 

demonstrated that 𝛼 can be identified and 

consistently estimated provided that ½ <

α ≤ 1. This paper complements the work of 

BKP by showing that the null hypothesis H_0: 

α in [0, 1/2) can be tested using the CD statistic 

if the value of 𝜖 is close to zero  ( when T 

remains approximately constant while ( N →

 ∞)). Conversely, in cases where 𝜖 = 1          ( 

meaning both N and T approach infinity at the 

same rate), the implicit null hypothesis of the 

CD test is given by  α  < 1/4. 

Furthermore, the null hypothesis of "weak 

cross-sectional dependence" appears to be 

more appropriate than the "cross-sectional 

independence" hypothesis in the context of 

large panel data models, where only pervasive 

cross-dependence is of concern. For instance, 

in portfolio analysis, full diversification of 

idiosyncratic errors is achieved even if errors 

are weakly correlated; cross-sectional 

independence is not a strictly necessary 

condition (Chamberlain, 1983) In panel data 

estimation, only strong cross-sectional 

dependence poses significant challenges. In 

most applications, weak cross-sectional 
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dependence of errors does not lead to serious 

issues in estimation or inference. 

In this study, we employ a single dependent 

variable, Carbon Dioxide emissions per capita, 

and three explanatory variables: Urban 

Population (as a percentage of the total 

population), Renewable Energy Consumption 

(as a percentage of total energy use), and Gross 

Domestic Product (GDP). 

To linearize the functional relationships and 

adequately address potential non-linear 

interactions, all variables have been subjected 

to logarithmic transformations. This approach 

facilitates the use of linear simulation models 

to explore the complex dynamics of 

interdependence among the variables. 

Specifically, Carbon Dioxide (CO2) emissions 

are utilized as the environmental indicator, 

measured in kilotons (kt). Urbanization (URB) 

is represented by the urban population share of 

the total population, while Renewable Energy 

Consumption (REC) is measured as a 

percentage of total final energy consumption. 

Gross Domestic Product (GDP) is 

denominated in constant US dollars.  

 

LCO2it =  a0i +  a1LURBit

+  a2LRECit 

+ a3LGDPit  εit 
 

4. Empirical Results 

In our econometric analysis, we aim to explore 

the impact of urbanization rates, renewable 

energy consumption, and Gross Domestic 

Product (GDP) on carbon dioxide (CO2) 

emissions. To achieve this objective, we 

follow a four-step empirical procedure: 

-  Cross-Sectional Dependence Testing. We 

begin by testing the hypothesis that all 

variables exhibit cross-sectional dependence 

(CSD) to ensure the validity of subsequent 

tests. 

-  Unit Root Testing. We examine the 

stationarity of the series and determine the 

order of integration for each variable included 

in the study. 

- Cointegration Analysis. We investigate 

whether a long-term cointegrating relationship 

exists among the variables. 

- Model Estimation. Finally, we estimate the 

model using the Mean Group (MG) estimator 

proposed by Pesaran and Smith (1995) and the 

Pooled Mean Group (PMG) estimator 

developed by (M. H. Pesaran et al., 1999). 

4.1. Testing cross – sectional depenencies and 

slope homogeneity 

he results of the cross-sectional dependence 

(CD) tests for both the individual variables and 

the panel models (FE and RE) are presented in 

Table 1 and the Model Comparison Table 2. 

- Variable-Level Analysis: 

The null hypothesis (H_0) of cross-sectional 

independence is strictly rejected for almost all 

variables (LCO2, LURB, LREC, LGDP) 

across the various tests (Breusch-Pagan LM, 

Pesaran scaled LM, and Bias-corrected scaled 

LM) at the 1\% significance level. This 

indicates that a shock occurring in one country 

in the panel is likely to transmit to other 
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countries, suggesting high interdependency 

among the sampled units. 

- Model-Level Analysis (Residuals): 

Regarding the diagnostics of the Fixed Effects 

(FE) and Random Effects (RE) models, the 

results confirm the presence of CD in the 

residuals. For the FE model, the Adjusted LM, 

Pesaran Scaled LM, and Breusch-Pagan LM 

tests all yield p-values of 0.000, leading to the 

rejection of the null hypothesis of 

independence. Similarly, the RE model shows 

significant cross-sectional dependence. 

The confirmation of cross-sectional 

dependence implies that standard "First 

Generation" panel unit root tests (like LLX or 

IPS) might produce biased and inconsistent 

results. Therefore, this study proceeds to 

employ Second Generation Unit Root Tests 

(such as CIPS or CADF) which are robust in 

the presence of cross-sectional correlation. 

Furthermore, this justifies the use of advanced 

estimation techniques (like CS-ARDL or 

DCCE) to ensure the reliability of the long-run 

estimates. 

Table 1. cross – sectional dependence tests 

Test Df LCO2 LURB LREC LGDP 

Breush-Pagan 

LM 

 

 

 

10 

139.337*** 242.073*** 65.790*** 275.185*** 

Pesaran scaled 

LM 

28.920*** 51.893*** 12.475*** 59.297*** 

Bias- corrected 

Scaled LM 

28.845*** 51.817*** 12.399*** 59.221*** 

Pesaran 

CD 

1.241 6.296*** -0.376 16.579*** 

Note : The symbols (***), (**), and (*) indicate hypothesis H0 : Cross – Sectional independence 

is not accepted at statistical thresholds of 0.01, 0.05 and 0.1 in succession 

Table 2. Model comparisons for cross-sectional dependence 

Breush pagan LM Pesaran Scaled LM Adjusted LM CD test Pesaran CD test Model 

P-

value 

Z- stat P-

value 

Chisq-stat P-value Chisq-stat P-value Z- stat 

0.000 37.549*** 0.000 6.160*** 0.000 6.084*** 0.838 -0.203 FE 

model 
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0.000 59.252*** 0.000 11.013***   0.073 1.792 RE 

model 

Note : The symbols (***), (**), and (*) indicate hypothesis H0 : Cross – Sectional independence is 

not accepted at statistical thresholds of 0.01, 0.05 and 0.1 in succession. 

Table 3: Hsiao test 

Hypotheses F-Stat P-Value 

H1 406.0326 1.1E-114 

H2 32.47353 9.58E-36 

H3 458.2826 3.55E-87 

Source: Own elaboration based on Eviews 13 output. 

    

The results of the Hsiao test indicate a total 

rejection of the null hypotheses (H1, H2, and 

H3) at the 1% significance level, as all p-values 

are approximately zero. This confirms the 

presence of cross-sectional heterogeneity in 

both slopes and intercepts across the sampled 

countries. Consequently, the study must 

employ econometric techniques that account 

for parameter heterogeneity to ensure 

consistent estimates. 

    The diagnostic analysis reveals two critical 

features of the dataset. First, the rejection of the 

null hypothesis in the CD tests confirms the 

presence of cross-sectional dependence among 

the variables and residuals. Second, the Hsiao 

test results strictly reject the homogeneity of 

slopes and intercepts, indicating significant 

parameter heterogeneity across countries. 

Taken together, these findings necessitate the 

application of second-generation panel 

econometric techniques to obtain robust and 

unbiased long-run estimates. 

4.2. Stationarity Test 

Table 3: Panel unit root test 

 level 1st Difference 

CIPS Test CIPS Test 

Lco2 -1.518 -3.413*** 

Lurb -3.115***  

lrec -1.513 -2.787*** 

lpib -3.211***  
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Note: The symbols (***), (**), and (*) 

indicate hypothesis H0 : all panels contain 

unit roots is not accepted at statistical 

thresholds of 0.01, 0.05 and 0.1 in succession 

Given the confirmation of cross-sectional 

dependence and slope heterogeneity across the 

panel, traditional first-generation unit root tests 

would yield biased results. Therefore, the 

study employs the Cross-sectionally 

Augmented IPS (CIPS) test(M. H. Pesaran, 

2007), which is robust under such conditions. 

The results presented in Table 3 indicate that 

Lco2 and Irec are non-stationary at their levels. 

However, Lurb and Ipib are found to be 

stationary at level, I(0), with a significance 

level of 1\%. Upon taking the first difference, 

the non-stationary variables (Lco2 and Irec) 

become stationary at the 1\% significance 

level. Consequently, the variables exhibit a 

mixed order of integration, I(0) and I(1), which 

justifies the subsequent use of advanced panel 

cointegration and estimation techniq

 

4.3. Cointegration Tests 

Table 4.  Results of Pedroni Residual cointegration Test 

 Tests Staistics Probabilities 

Pedroni Test Panel v-Staistic -0.129 0.551 

Panel rho-Statistic -0.352 0.362 

Panel PP-Statistic -3.266 0.0005*** 

Panel ADF-Statistic -4.100 0.0000*** 

Group rho- Statistic 0.935 0.825 

Group PP- Statistic -3.706 0.0001*** 

Group ADF- Statistic -1.586 0.0564* 

Kao Test ADF -2.013 0.022** 

Note: The symbols (***), (**), and (*) 

indicate the rejection of the null hypothesis  

H0 : No cointegration exists at  0.01, 0.05 and 

0.1. 

To investigate the existence of a long-term 

equilibrium relationship between the study 

variables, the (Pedroni, 2004) 2004 

Cointegration and (Kao et al., 1999) 1999 

Tests were applied. This test relies on seven 

different statistics categorized into two groups: 

within-dimension (Panel) and between-

dimension (Group). The results presented in 

the table indicate the following: 
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The results show that both the Panel PP-

Statistic and Panel ADF-Statistic are 

statistically significant at the 1% level, with p-

values of (0.0005) and (0.0000) respectively. 

This allows for the rejection of the null 

hypothesis (H0), which states that there is no 

cointegration. 

The results in this category further confirm the 

existence of cointegration. Specifically, the 

Group PP-Statistic is highly significant with a 

p-value of (0.0001). Additionally, the Group 

ADF-Statistic is significant at the 10% level. 

The p-value associated with the Kao statistic is 

0.02, which is significant at the 0.05 level. This 

further confirms the existence of cointegration 

among the study variables. 

Based on the aforementioned results, and since 

the majority of the statistics particularly the 

ADF and PP statistics, which are known for 

their superior statistical power are significant, 

we reject the null hypothesis and accept the 

alternative hypothesis. This confirms the 

existence of a long-run cointegrating 

relationship among the study variables during 

the period (1990-2023). This implies that the 

variables move together in the long run 

4.5. Model estimation 

Table 5. MG Regression 

Depedent varaiables 

LCO2 

Coefficient Std-Error T-Statistic Probability 

Long run equation 

LURB 1.020 0.911 1.119 0.264 

LGDP -0.007 0.143 -0.051 0.959 

LREC 0.067 0.310 0.216 0.829 

C -1.504 1.745 -0.861 0.390 

Short run equation 

COINTEQ -0.487 0.112 -4.335 0.000 

Source: Own elaboration based on Eviews 13 output. 

The Pooled Mean Group (PMG) regression 

model, as proposed by Pesaran (Pesaran et al, 

1997)., was employed. This model allows for 

the estimation of convergence speed and short-

run adjustments to account for the 

heterogeneity across countries. The PMG 

estimation is a modified version of the Mean 

Group (MG) estimator (H. Pesaran et al., 
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2004). According to Pesaran, the MG 

estimator is a pooled estimation technique that 

averages the coefficients across groups and 

assumes homogeneous slope coefficients and 

error variances. 

The PMG model extends the simple ARDL 

framework to accommodate panel data by 

allowing for heterogeneity in short-run and 

long-run coefficients across cross-sectional 

units. Furthermore, the model imposes 

restrictions on the homogeneity of long-run 

coefficients across cross-sectional units, 

following the approach suggested by Pesaran. 

Table 6. hausman Test 

 

Source: Own elaboration based on Eviews 13 output. 

Based on the Hausman test results, a definitive 

statistical value could not be obtained 

(reported as NA) because the difference of 

covariances was not positive definite. 

However, considering the individual 

coefficient differences between the PMG and 

MG estimators particularly for the GDP 

variable (LPIB), which showed a significant 

difference with a p-value of 0.0002 the Mean 

Group (MG) estimator was adopted as the 

more efficient and reliable model for 

interpreting the relationships in this study. 

The estimation results of the MG model 

reveal the following: 

- Long-run Cointegration: The results indicate 

that the Error Correction Term (COINTEQ) is 

negative and highly significant at the 1% level, 

with a coefficient of -0.487 and a p-value of 

0.0000. This confirms the existence of a long-

run equilibrium relationship (cointegration) 

between CO2 emissions and the independent 

variables (GDP, Renewable Energy 

Consumption, and Urbanization). 

Furthermore, the coefficient value suggests a 

high speed of adjustment; approximately 

48.7% of the short-run disequilibrium is 

corrected each period, returning the system to 

its long-run steady state in just over two years. 
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- Long-run Coefficients: Despite the presence of 

a cointegrating relationship, the results do not 

show a statistically significant long-run impact 

of the independent variables (LGDP, LREC, 

and LURB) on carbon emissions across the 

study sample, as the p-values for all these 

variables exceeded the 5% significance 

threshold. Within the MG framework, this can 

be attributed to the diverse structural 

characteristics of the countries in the panel, as 

this estimator calculates the average of 

country-specific parameters rather than 

assuming long-run homogeneity. 

5. Conclusion 

This study sought to explore the determinants 

of carbon dioxide emissions in five leading 

African economies Algeria, Egypt, Ethiopia, 

Nigeria, and South Africa spanning the period 

from 1991 to 2023. By employing the Panel 

Autoregressive Distributed Lag (Panel ARDL) 

bounds testing approach for cointegration and 

utilizing the Mean Group (MG) estimator, the 

results confirm the existence of a stable long-

run equilibrium relationship between the 

independent variables and environmental 

emissions. 

Empirical findings revealed high efficiency in 

the error correction mechanism, with the speed 

of adjustment reaching approximately 48.7% 

annually. This reflects the resilience of these 

economies in returning to their long-run 

equilibrium path following short-term shocks. 

However, the statistical insignificance of the 

long-run coefficients for renewable energy and 

urbanization across the entire sample suggests 

that current efforts in these countries still lack 

the necessary momentum to achieve a tangible 

structural shift in overall environmental 

performance. 

The results of this study align with the 

consensus among numerous researchers that 

urbanization is a primary determinant of 

environmental quality, despite variations in the 

direction of its impact. While studies such as 

Ou et al. (2019) and Cetin (2018) found that 

urbanization directly accelerates emissions, 

our findings in the selected African countries 

specifically Nigeria, in line with the study by 

Akorede & Afroz (2020)  indicate that the 

impact of urbanization may be negative or 

insignificant in the long run. This divergence 

reinforces the findings of Shahbaz et al. (2016) 

regarding the non-linear nature of the 

urbanization-environment relationship (U-

shaped), where the impact varies according to 

the level of development and the efficiency of 

urban planning. 

Secondly: The Role of Economic Growth and 

Energy Consumption: 

Consistent with the studies of Zou et al. (2014) 

and Shahbaz et al. (2014), the current study 

confirms that economic growth remains the 

primary driver of increased carbon emissions 

in developing and emerging economies. 

Furthermore, the dominance of traditional 

energy sources in these countries renders the 
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speed of return to environmental equilibrium 

contingent upon the extent of the transition 

toward alternative energy sources. This 

explains the statistical significance of the error 

correction term in our model, estimated at 

48.7%. 

6. Recommendations and Future 

Perspectives: 

Based on the lessons learned from previous 

literature and the empirical findings of this 

research, we propose the following 

recommendations: 

• Transition Toward "Compact Expansion": 

Drawing on the recommendations of Van der 

Borght and Barbera (2023), African nations 

should adopt high-density urban models to 

mitigate the emissions resulting from 

horizontal suburban sprawl. 

• Rationalization of Urban Forms: 

Consideration must be given to the three-

dimensional aspects of cities (verticality and 

density), as suggested by Xiong et al. (2024), 

to reduce the carbon footprint of both 

residential and industrial sectors. 

• Enhancing Alternative Energy Efficiency: It is 

imperative to activate the role of renewable 

energy not merely as an alternative, but as a 

strategic tool for decoupling economic growth 

from environmental degradation, particularly 

in high-density countries such as Egypt and 

Nigeria. 

• Tailoring Environmental Policies: Given the 

confirmed heterogeneity among the countries 

in our model (justifying the preference for the 

MG estimator), it is essential for each nation to 

formulate its environmental strategy based on 

its specific economic characteristics whether 

oil-dependent like Algeria or emerging 

agricultural like Ethiopia rather than adopting 

unified, "one-size-fits-all" policies.  
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