

RESEARCHARTICLE

WWW.PEGEGOG.NET

The Reality of Employing Educational Technology in Teaching Students with Mild Intellectual Disabilities from the Perspective of Special Education Teachers

Dr. Lylia KHABET¹, Dr. Djaouida BAHMED²

¹Mouloud Mammeri University of Tizi Ouzou, Laboratory of the Individual, Family, and Society: A Psychosocial Approach, Algeria. Email: lylia.khabet@ummto.dz

²Mouloud Mammeri University of Tizi Ouzou, Laboratory of the Individual, Family, and Society: A Psychosocial Approach, Algeria. Email: djaouida.bahmed@ummto.dz

Received: 03/04/2025; Accepted: 15/10/2025; Published: 02/01/2026

Abstract:

The study aimed to identify the differences among special needs educators regarding the use of educational technology, the perceived importance of its use, and the obstacles associated with employing it in teaching children with mild intellectual disabilities. The study sample consisted of 28 educators selected purposively, who completed the questionnaire "The Reality of Using Educational Technology in Teaching Children with Mild Intellectual Disabilities from the Perspective of Special Education Teachers," designed by Mustafa (2019). The results revealed statistically significant differences among educators in terms of technology use, perceived importance, and identifying the obstacles they face.

Keywords: Educational technology, Mild intellectual disability, Special needs educators.

1. Introduction:

The contemporary world is witnessing rapid transformations in the fields of technology and digital communication, which have clearly impacted the educational system. Educational technology has become a central tool in developing teaching methods, improving the quality of learning, and achieving equal educational opportunities.

In this context, the integration of technology in the field of special education is of great importance, particularly in the education of individuals with mild intellectual disabilities, whose cognitive characteristics require specialized educational interventions that take into account individual differences and learning pace. Recent studies indicate that the use of interactive

technological media contributes to facilitating knowledge acquisition, developing skills, and enhancing motivation and independence among this group.

However, the effective utilization of these potentials faces several challenges, most notably weak digital infrastructure, limited equipment, and a lack of specialized training among special education teachers. Accordingly, this study aims to analyze the reality of using educational technology in teaching individuals with mild intellectual disabilities and to explore the associated challenges from educators' perspectives, thereby contributing to the support of educational practices and the enhancement of social inclusion for this group.

2. Problem Statement:

In recent years, the educational field has undergone rapid transformations that have contributed to the emergence of educational technology as one of the key approaches for developing the teaching process and improving learning outcomes, especially in the field of special education, which is characterized by diverse categories of learners with varying developmental, cognitive, and emotional traits.

Learners with intellectual disabilities are among the groups that most require innovative educational approaches, due to the difficulties they face in learning, communication, and social adaptation. This necessitates moving beyond traditional methods and seeking more flexible and tailored teaching strategies that meet their specific needs.

In this context, special education technology represents an integrated educational approach that combines both theoretical and practical aspects in the design, development, implementation, and evaluation of educational programs directed at this group. Its aim is to facilitate teaching and learning processes and to utilize diverse learning resources in ways that develop learners' abilities and enhance their educational experiences (Sobhi, 2006, p. 68; Al-Bata', 2014, pp. 12–15). Moreover, this technology is not limited to a set of modern tools and devices; rather, it constitutes a methodological framework grounded in educational research and theories of learning and human communication. It aims to adapt the educational environment to meet the needs of learners with intellectual disabilities (Al-Muhaysin & Al-Badarin, 2024, p. 8).

Educational technology gains particular importance in teaching learners with intellectual disabilities because it provides a stimulating and supportive learning environment. Such an environment enhances interaction and participation in the educational setting, reduces anxiety and stress, and develops communication skills—especially for learners who experience language difficulties or limitations in verbal expression. Interactive technological tools also provide greater opportunities for individualized learning according to learners' abilities and pace, which enhances their motivation to learn and helps them achieve a higher level of independence (Aroussi et al., 2018, p. 112; Mustafa, 2019, p. 41).

Despite the significant potential of supportive educational devices and software—such as augmentative and alternative communication devices, speech-enabled computers, and multimedia programs—the reality in the field reveals a gap between the theoretical capabilities of these technologies and their actual utilization within educational institutions. This discrepancy is not only linked to the availability of technical tools but also to the degree of educational awareness regarding their use and the extent to which they

are integrated into structured educational planning that considers learners' characteristics and abilities and aligns with the objectives of adapted education.

This gap becomes more pronounced when the introduction of educational technologies is not accompanied by clear pedagogical planning that takes into account the developmental and cognitive characteristics of learners with intellectual disabilities. In such cases, the use of technology may become an end in itself rather than a supportive means for achieving learning. Furthermore, the absence of clear criteria for selecting appropriate technological tools and aligning them with specific educational objectives often leads to a weak educational impact, despite the availability of technical resources. Therefore, the effectiveness of educational technology is measured not by the modernity or variety of the tools, but by the extent to which they integrate with the educational content, teaching strategies, and assessment methods, achieving meaningful and functional learning for this group.

The success of integrating educational technology in teaching learners with intellectual disabilities also depends on the pivotal role of special education teachers, who are

the key agents in translating technological potentials into actual teaching practices. Teachers' possession of cognitive, practical, and affective competencies—resulting from academic preparation and specialized professional training—is an essential condition for ensuring the effective use of technology to serve learning objectives, respond to learners' needs, and enhance their social and academic inclusion (Dheeb & Makhlof, 2019, p. 140; Ben Qasmia & Shweil, 2018, pp. 265–266).

Based on the foregoing, the problem of this study can be formulated in the following question: What is the reality of employing educational technology in teaching learners with mild intellectual disabilities from the perspective of special education teachers?

From this, the following research questions are derived:

- ✓ Are there differences among special education teachers in the utilization of educational technology for teaching learners with mild intellectual disabilities?
- ✓ Are there differences among special education teachers in assessing the importance of using educational technology in teaching

learners with mild intellectual disabilities?

- ✓ Are there differences among special education teachers in identifying the obstacles to employing educational technology in teaching learners with mild intellectual disabilities?

3. Study Hypotheses :

- First Hypothesis: There are statistically significant differences among special education teachers in the utilization of educational technology for teaching learners with mild intellectual disabilities.
- Second Hypothesis: There are statistically significant differences among special education teachers in evaluating the importance of employing educational technology in teaching learners with mild intellectual disabilities.
- Third Hypothesis: There are statistically significant differences among special education teachers in identifying the obstacles to using educational technology in teaching learners with mild intellectual disabilities.

4. Study Objectives :

The study aims to identify the following from the perspective of special education teachers:

- ✓ The extent to which educational technology is utilized in teaching learners with mild intellectual disabilities.
- ✓ The perceived importance of employing educational technology in teaching learners with mild intellectual disabilities.
- ✓ The perceived obstacles to the use of educational technology in teaching learners with mild intellectual disabilities.

5. Significance of the Study :

The significance of this study stems from the growing role of educational technology in enhancing the quality of the teaching and learning process, particularly when applied to learners who require specialized instructional approaches, such as children with mild intellectual disabilities. The importance of the study can be considered from two main dimensions: theoretical and practical.

At the theoretical level, this study contributes to expanding the knowledge base regarding the use of educational technology in teaching children with mild intellectual disabilities, especially given the scarcity of studies that focus directly on this group compared to research on disabilities in general. The study also highlights the role of modern

technological tools in developing certain cognitive and social aspects of these children, thereby opening new avenues for research aimed at creating digital content and curricula tailored to their cognitive characteristics. Moreover, the study provides a theoretical framework that can serve as a reference for researchers interested in designing adaptive digital learning environments that respond to the needs of children with mild intellectual disabilities.

At the practical level, the study helps identify the key challenges faced by special education teachers when integrating educational technology into classroom instruction, thereby facilitating the development of practical solutions to enhance its effectiveness. The findings and recommendations of the study also support the improvement of learning environments tailored to children with mild intellectual disabilities, and provide data that policymakers can utilize to strengthen digital infrastructure and promote teacher training in educational technologies.

6. Study Concepts and Operational Definitions :

6.1 Educational Technology :

From a conceptual standpoint, educational technology is defined as an integrated system of technological tools and resources employed by special education teachers in instructing children with mild intellectual disabilities. This includes computers, interactive whiteboards, tablets, as well as interactive applications and multimedia resources. The utilization of this technology aims to facilitate the learning process, enhance classroom interaction, and support learner engagement in a manner that aligns with their abilities and educational needs.

6.2 Mild Intellectual Disability :

Mild intellectual disability is defined as a condition characterized by limitations in overall cognitive functioning, manifested in a noticeable reduction in intellectual abilities, with affected individuals having an IQ range between 50 and 70. This cognitive limitation is accompanied by deficits in daily adaptive skills, such as communication, self-care, and social interaction, in addition to difficulties in academic learning. These characteristics typically emerge during the developmental period, particularly before the age of eighteen. In the context of this study, this category refers to children who

are capable of learning and can benefit from targeted educational programs, provided that a supportive learning environment is established and specialized educational assistance is offered in accordance with their abilities and needs.

6.3 Special Education Teachers :

In this study, special education teachers refer to educators who work with children with mild intellectual disabilities within educational institutions. These teachers are responsible for designing and implementing instructional and technological programs that contribute to the development of children's skills and the enhancement of their abilities. In carrying out their duties, these teachers utilize educational tools and resources that align with the characteristics of the target group, with the aim of achieving effective learning that is tailored to the individual needs of each child.

7. Previous Studies :

Recent studies highlight the importance of employing educational technology to support the learning of children with mild intellectual disabilities and to enhance their academic and social skills. Mustafa (2019), for example, aimed to examine the current use of

educational technology from teachers' perspectives, employing a descriptive-analytical approach with a sample of 160 teachers. The study utilized a questionnaire covering four domains—extent of use, actual practice, perceived importance, and obstacles—alongside open-ended interviews. The results indicated a strong consensus on the importance of employing technology, with an overall response score of 75.4. No statistically significant differences were found based on gender or specialization; however, differences were observed in relation to teaching experience, educational qualification, and governorate (Mustafa, 2019).

In a study conducted by Ok and Bryant (2016), a meta-analytic approach was employed to evaluate the impact of technology on mathematics learning among children with intellectual disabilities. The findings indicated that assistive technologies, particularly interactive software, had a moderate to strong positive effect, especially when integrated within individualized educational plans (Ok & Bryant, 2016).

Similarly, Al-Azawei et al. (2016) focused on analyzing Universal Design for Learning (UDL) research conducted between 2012 and 2015. The study concluded that the strategic

use of technology according to scientific principles contributes to the creation of an inclusive learning environment, facilitating the integration of learners with special needs and ensuring equal opportunities for learning (Al-Azawei et al., 2016).

In the same context, Alnahdi (2014) examined the vital role of assistive technology within the framework of Universal Design for Learning (UDL), noting that the use of tablets and interactive applications enhances the independence of children with intellectual disabilities and increases their classroom participation, provided that these technologies are integrated into a flexible learning environment that accommodates individual differences (Alnahdi, 2014).

Alkahtani (2013) focused on teachers' knowledge and use of assistive technology, revealing that most teachers lack specialized training, which hinders effective implementation. The study recommended the inclusion of targeted training programs to enhance teachers' competencies (Alkahtani, 2013).

Bouck et al. (2012) demonstrated that the use of interactive software contributes to improving the

academic performance of children with mild intellectual disabilities, particularly in fundamental skills such as reading and writing, while also enhancing their motivation and classroom engagement (Bouck et al., 2012).

Peterson-Karlan (2011) found that the use of technological tools, such as automated correction software and predictive text programs, helps improve writing skills among children with disabilities, reduces linguistic errors, and increases their self-confidence (Peterson-Karlan, 2011).

Edyburn (2010) proposed ten hypotheses for developing the concept of Universal Design for Learning, emphasizing that technology should be employed as part of a comprehensive strategy to improve access to learning, particularly for children with intellectual disabilities (Edyburn, 2010).

Finally, Smith and Okolo (2010) highlighted the importance of integrating technology as an evidence-based instructional intervention, demonstrating that its use improves attention, reduces distraction, and increases classroom interaction for children with disabilities (Smith & Okolo, 2010).

8. Field Study Procedures :

8.1 Research Method :

This study employed the descriptive research method, as it is considered the most suitable for achieving the current study's objectives. The descriptive method encompasses a set of systematic research procedures aimed at providing a comprehensive account of the phenomenon under investigation. This involves the collection, classification, processing, and thorough analysis of facts and data in order to interpret their significance and derive conclusions and generalizations about the studied phenomenon or topic.

8.2 Study Population :

The study population consists of all units representing the phenomenon under investigation. For the current study, the target population includes all special education teachers working in the centers affiliated with the Tizi Ouzou and Boumerdes provinces.

8.3 Study Sample :

The study sample consisted of 28 special education teachers, who were selected intentionally from three institutions: the "Tadmaït" Psycho-Pedagogical Center in Tizi Ouzou, the "Tigelabine" Psycho-Pedagogical

Center in Boumerdes, and the Parents' Association for Children with Special Needs, "Ethran." The study instrument, a questionnaire on the use of educational technology in

teaching children with special needs, was administered to collect the perspectives of special education teachers regarding this topic.

Table 1: Distribution of the Sample by Institution

Institution	Frequency	Percentage
Parents' Association for Children with Special Needs "Ethran"	9	32.14%
"Tigelabine" Psycho-Pedagogical Center	10	35.72%
"Tadmaït" Psycho-Pedagogical Center	9	32.14%
Total	28	100%

As shown in Table 1, the distribution of the sample across the institutions is as follows: 32.14% for both the Parents' Association "Ethran" and the "Tadmaït" Psycho-Pedagogical Center, and 35.72% for the "Tigelabine" Psycho-Pedagogical Center.

8.4 Study Instrument :

The study relied on the following instrument: the questionnaire on the

current use of educational technology in teaching children with mild intellectual disabilities, as perceived by special education teachers. This questionnaire was developed by the researcher Mohamed Abdelkader Abdelrahman Mustafa (2019) and comprises four domains, encompassing a total of 83 items, distributed as follows:

Table 2: Distribution of Questionnaire Items by Domain

Domain	Item Numbers	Number of Items
Extent of using educational technology in teaching children with mild intellectual disabilities capable of learning	1–25	25
Actual use of educational technology in teaching children with mild intellectual disabilities capable of learning	26–44	19
Perceived importance of using educational technology in teaching children with mild intellectual disabilities capable of learning	45–63	19
Obstacles to using educational technology in teaching children with mild intellectual disabilities capable of learning	64–83	20
Total	—	83

Responses to the questionnaire items were collected using a five-point Likert scale, where the options range from "Very High," scored as 5, followed by "High," scored as 4, "Moderate," scored as 3, "Low," scored as 2, and finally "Very Low," scored as 1. The arithmetic means derived from the responses were then converted into percentages to facilitate the interpretation of results, using the following classification: a percentage of 20% or less is considered "Very Low," 21%–40% as "Low," 41%–60% as "Moderate," 61%–80% as "High," and percentages exceeding 80% as "Very High."

***Psychometric Properties of the Questionnaire in the Current Study :**

1/ Content Validity (Expert Judgment):

The questionnaire was submitted to a panel of expert educators in the field of educational sciences from the University of Mouloud Mammeri (Tizi Ouzou), Mohamed Akli Oulhadj University (Bouira), Djellali Bounaama University (Khemis Miliana), and the University of Bejaia, to verify its suitability for achieving the study objectives. The experts were asked to evaluate the relevance of each item to the study sample and the extent to which it

accurately represented the dimension for which it was designed. To ensure objectivity, the agreement coefficient among the experts for each item was calculated using Cooper's formula (Cooper, 1974).

Based on this evaluation, the results were as follows:

- ❖ 100% agreement was achieved for the items numbered: 1, 3, 5, 7, 10, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 27, 28, 30–38, 39–45, 47–49, 50–57, 58–70, 71, 79, 83.
- ❖ 90% agreement was achieved for the items numbered: 2, 4, 6, 8, 9, 11, 12, 19, 21, 25, 26, 29, 46, 72–78, 80–82.

2/ Internal Consistency Validity :

The questionnaire was administered to a pilot sample of 20 participants to assess its internal consistency. The correlation coefficient of each item was calculated with the total score of the dimension to which the item belongs, as well as with the overall total score of the questionnaire. Additionally, the correlation between the total scores of the dimensions and the total questionnaire score was computed.

Two criteria were applied to determine whether an item should be retained in the questionnaire. An item had to meet both criteria

simultaneously; satisfying only one was insufficient. The two criteria were:

1. The item must exhibit a statistically significant correlation with both the total score of its respective dimension and the overall total score of the questionnaire. Significance with only one of these was not sufficient.
2. The item's correlation with the total score of its dimension and the overall total score of the questionnaire must not be less than 0.25.

After applying these criteria to all questionnaire items, all statistically significant items were retained, while items that did not show significance with both their respective dimension and the overall questionnaire simultaneously were excluded. These excluded items were numbered: 2, 4, 9, 11, 19, 21, 25, 72, 73, 76, 77, and 81. Consequently, the final questionnaire used in the current study and administered to the actual study sample consists of 71 items.

3/ Questionnaire Reliability :

To verify the reliability of the questionnaire, two methods were employed:

a. Cronbach's Alpha Coefficient as an indicator of internal consistency reliability.

b. Split-Half Method as an indicator of stability reliability, applied to the pilot study sample.

Table 3: Reliability Coefficients of the Questionnaire Using Cronbach's Alpha and Split-Half Methods

Reliability Method	Cronbach's Alpha	Split-Half Reliability	Spearman-Brown	Guttman	Alpha (Part 1)	Alpha (Part 2)
Value	0.96	0.70	0.82	0.82	0.94	0.95

As shown in Table 3, the Cronbach's alpha coefficient for the pilot sample was 0.96. Using the split-half method, the reliability coefficients for the first and second halves were 0.94 and 0.95, respectively. The Spearman-Brown and Guttman coefficients were both 0.82. These values indicate that the questionnaire possesses a high level of reliability,

confirming its suitability for use in the current study.

4/ Components of the Questionnaire (Final Version) :

After adapting the questionnaire for the current study sample and verifying its validity and reliability, it consisted of 71 items distributed across four dimensions, as shown in the table below:

Table 4: Distribution of Questionnaire Items Across Dimensions in the Final Version

Dimension No.	Dimension	Represented Item Numbers	Number of Items
01	Extent of using educational technology in teaching children with mild intellectual disabilities	1–18	18
02	Actual use of educational technology in teaching children with mild intellectual disabilities	19–37	19

Dimension No.	Dimension	Represented Item Numbers	Number of Items
03	Perceived importance of using educational technology in teaching children with mild intellectual disabilities	38–56	19
04	Obstacles to using educational technology in teaching children with mild intellectual disabilities	57–71	15
Total	—	—	71

As indicated in Table 4, the final questionnaire is composed of four dimensions:

- ✓ **Dimension 1:** Extent of using educational technology in teaching children with mild intellectual disabilities, including 18 items.
- ✓ **Dimension 2:** Actual use of educational technology in teaching children with mild intellectual disabilities, including 19 items.
- ✓ **Dimension 3:** Perceived importance of using educational technology in teaching children with mild intellectual disabilities, including 19 items.
- ✓ **Dimension 4:** Obstacles to using educational technology in teaching children with mild intellectual disabilities, including 15 items.

The total number of items in the questionnaire is 71.

9. Presentation of Study Results :

9.1 Results for the First Hypothesis :

The first hypothesis states: “There are statistically significant differences among special education teachers in the use of educational technology in teaching children with mild intellectual disabilities.”

To test this hypothesis, a one-sample t-test was conducted using the hypothetical mean of 57, which was calculated as follows: $(\text{Maximum Score} - \text{Minimum Score}) / 2$. The results are presented in the table below:

Table 5: Differences among Special Education Teachers in Their Use of Educational Technology for Teaching Children with Mild Intellectual Disabilities

Variable	Hypothetical Mean	Sample Mean	Standard Deviation	t-value	Degrees of Freedom	Calculated Significance Level	Adopted Significance Level
Use of educational technology in teaching children with mild intellectual disabilities	57	69.27	11.89	5.94	30	0.00	0.05

As shown in Table 5, the hypothetical mean is 57, while the sample mean of special education teachers' scores on the use of educational technology in teaching children with mild intellectual disabilities is 69.27. The computed one-sample t-value is 5.94 with a significance level of 0.00, which is less than the adopted significance level of 0.05.

This indicates that there are statistically significant differences among special education teachers in their use of educational technology for teaching children with mild intellectual disabilities. Therefore, the first hypothesis is confirmed.

9.2 Results for the Second Hypothesis :

The second hypothesis states: "There are statistically significant differences among special education teachers in determining the importance of using educational technology in teaching children with mild intellectual disabilities."

To verify this hypothesis, a one-sample t-test was conducted using the hypothetical mean of 57, calculated as follows: $(\text{Maximum Score} - \text{Minimum Score}) / 2$. The results are shown in the table below:

Table 6: Differences among Special Education Teachers in Assessing the Importance of Using Educational Technology in Teaching Children with Mild Intellectual Disabilities

Variable	Hypothetical Mean	Sample Mean	Standard Deviation	t-value	Degrees of Freedom	Calculated Significance Level	Adopted Significance Level
Assessing the importance of using educational technology in teaching children with mild intellectual disabilities	57	72.15	14.02	6.11	30	0.00	0.05

As shown in Table 6, the hypothetical mean is 57, while the sample mean of special education teachers' scores for assessing the importance of using educational technology is 72.15. The computed one-sample t-value is 6.11 with a significance level of 0.00, which is less than the adopted significance level of 0.05.

This indicates that there are statistically significant differences among special education teachers in determining the importance of using educational technology in teaching children with mild intellectual disabilities. Therefore, the second hypothesis is confirmed.

9.3 Results for the Third Hypothesis :

The third hypothesis states: "There are statistically significant differences among special education teachers in identifying the obstacles to using educational technology in teaching children with mild intellectual disabilities."

To test this hypothesis, a one-sample t-test was conducted using the hypothetical mean of 45, calculated as follows: $(\text{Maximum Score} - \text{Minimum Score}) / 2$. The results are presented in the table below:

Table 7: Differences among Special Education Teachers in Identifying the Obstacles to Using Educational Technology in Teaching Children with Mild Intellectual Disabilities

Variable	Hypothetical Mean	Sample Mean	Standard Deviation	t-value	Degrees of Freedom	Calculated Significance Level	Adopted Significance Level
Identifying obstacles to using educational technology in teaching children with mild intellectual disabilities	45	52.68	10.26	4.87	30	0.00	0.05

As shown in Table 7, the hypothetical mean is 45, while the sample mean of special education teachers' scores in identifying the obstacles to using educational technology is 52.68. The computed one-sample t-value is 4.87 with a significance level of 0.00, which is less than the adopted significance level of 0.05.

This indicates that there are statistically significant differences among special education teachers in identifying the obstacles to using educational technology in teaching children with mild intellectual disabilities. Therefore, the third hypothesis is confirmed.

10. Discussion of the Study Results :

The statistical results for the first hypothesis indicated that there are statistically significant differences among special education teachers in the level of using educational technology to teach children with mild intellectual disabilities at the significance level of 0.05, which aligns with the hypothesis expectations for the study sample. This can be attributed to the high awareness of teachers regarding the importance of employing technological tools and their ability to utilize them to enhance the quality of education for this group (Mustafa, 2019; Ok & Bryant, 2016).

However, these differences may also reflect variations in teachers' technical and pedagogical training. Effective teaching with technology

requires specialized technical knowledge and the ability to integrate these tools into an instructional context that suits the needs of children with mild intellectual disabilities (Alnahdi, 2014; Alkahtani, 2013). The availability of technical and pedagogical resources in educational institutions also directly affects the effectiveness of technology use, as some teachers have access to the latest digital tools, whereas others face challenges due to limited resources or lack of technical support.

Therefore, differences in the use of educational technology result from a combination of individual and institutional factors, including teachers' training level and the availability of infrastructure and technical resources. To enhance the effective use of technology, it is recommended to develop continuous professional development programs for teachers, provide supportive learning environments, and ensure equitable access to technological resources, which contributes to improved learning outcomes for children with intellectual disabilities (Bouck et al., 2012; Edyburn, 2010).

The statistical results for the second hypothesis also showed statistically significant differences among special education teachers in determining the

importance of using educational technology to teach children with mild intellectual disabilities at the significance level of 0.05, consistent with the hypothesis expectations for the study sample.

These differences can be interpreted as reflecting variations in teachers' awareness and training regarding the integration of modern technology in education. Some teachers received specialized training that enabled them to use technological tools effectively to enhance interaction and learning, leading to a higher appreciation of their importance. Conversely, some teachers face a lack of training or limited practical experience, which diminishes their perception of the value of these tools.

Moreover, institutional and environmental factors influence this variation. The presence of a strong infrastructure, including modern devices and specialized software, contributes to enhancing teachers' appreciation of the importance of technology in education. Consequently, there is a clear need to strengthen professional development programs for teachers and provide technology-equipped learning environments to enhance their perception of the significance of educational technology, improve the

quality of learning, and achieve better outcomes for children with intellectual disabilities.

The statistical results for the third hypothesis also revealed statistically significant differences among special education teachers in identifying the obstacles to using educational technology to teach children with mild intellectual disabilities at the significance level of 0.05, in line with the hypothesis expectations for the study sample.

These differences can be explained by the diversity in teachers' professional training and experience, as well as the differences in technological resources available in their educational environments. Teachers working in schools lacking technological infrastructure may face greater challenges compared to those in schools equipped with advanced digital tools.

The results indicate that these obstacles vary among teachers depending on their experience and specialization, highlighting the need for continuous and targeted training programs to enhance their competence in employing educational technology. Additionally, improving infrastructure, technical equipment, and ongoing technical support is

essential to enable teachers to use digital tools effectively and improve the learning experience for children with intellectual disabilities.

Accordingly, it is recommended that educational institutions implement policies ensuring comprehensive learning environments that support the effective use of educational technology, thereby enhancing teaching quality and achieving better interaction with children with mild intellectual disabilities.

References:

- Al-Azawei ,A;Sermelli , F ;Lundquist ,K .(2016) .Universal Design for Learning :A content analysis of peer-reviewed journal papers from 2012 to 2015.Journal of the scholarship of teaching and learning , 16(3),39-56.
- Al-Bate' , Hassan Mohamed Abdel-Aty (2014). Educational Technology for Special Needs and Assistive Tools. Alexandria: Dar Al-Jame'a Al-Jadida.
- Alkahtani,S.A.(2013). Using computer and the internet in preparing teachers of Arabic to speakers of other language : The status of Arabic Language Institute at King Saud University . Jordan journal of education sciences ,9(4),365-375.
- Al-Muhsin, Iman Jawdat & Al-Badarin, Shadi Khalid (2024). Obstacles to the Use of Technology in Teaching Students with Disabilities from the Perspective of Their

Teachers in Oman. Journal of Special Education and Rehabilitation, 17(60).

- Alnahdi ,G.H.(2014) . Special education teacher transition-related competencies and preparation in Saudi Arabia . International journal of special education , 29(2) , 1-9.
- Aroussi, Al-Daraji, Atouti, Nour El-Din, & Zibshi, Nour El-Din (2018). Educational Technology for Adapted Physical Activity. Al-Khabir Journal, 02(13).
- Ben Qasima, Farid & Shweil, Samia (2018). A Study of the Educational Competencies of Special Education Teachers. Journal of Educational and Pedagogical Research, 07(02).
- Bouck , E . C, Maeda, Y et Flanagan,S.M. (2012).Assistive technology and students with high incidence disabilities :A national survey . Journal of special Education Technology ,27(4),47-57.
- Dheeb, Fahmiya & Makhlof, Souad (2019). Professional Competencies of Special Education Teachers: The Case of Children with Intellectual Disabilities. Journal of Psychological and Educational Sciences, 05(01), 138–155.
- Edyburn,D.L.(2010).Would you recognize universal design for learning if you saw it ?Ten propositions for new directions for the second decade of UDL .Learning Disability Quarterly ,33(1),33-41.
- Mustafa, Mohamed Abdel-Qader Abdel-Rahman (2019). The Reality of Using

Educational Technology in Teaching Children with Mild Intellectual Disabilities from the Perspective of Their Teachers in Palestine. Master's Thesis in Curricula and Teaching Methods, Graduate School, An-Najah National University, Nablus, Palestine.

- OK ,M .W ;Bryant ,D.P;Braynt,B.R.(2019).Effect of computer assisted instruction on the mathematics performance of students with learning disabilities : A Synthesis of the research . Exceptionality , 28(1),30_44.
- Peterson-Karlan , G.R .(2011).Technology to support writing by students with learning and academic disabilities: recent research trends and findings.Assistive Technology outcomes and benefits , 7(1),39-62.
- Smith ,S,J;ET OKOLO ,C.M(2010).Response to intervention and evidence-based practices :where does technology fit?Learning Disability Quarterly , 33(4), 257-272.
- Sobhi, Ahmed Mohamed Suleiman (2006). Proposed Curriculum in Educational Technology for Special Populations for Students of Educational Technology, Faculties of Specific Education. PhD Dissertation in Philosophy of Education. Gulf Kids e-Library for Children with Special Needs: www.gulfkids.com.