

RESEARCH ARTICLE

WWW.PEGEGOG.NET

Chemistry didactics: Theoretical foundations, pedagogical challenges, and contemporary perspectives

Hiba MERKOUNE¹, Hizia MERKOUNE²

^{1,2} Khemis Miliana University, Algeria

Email: h.merkoune@univ-dbkm.dz¹; hizia.merkoune@univ-dbkm.dz²

Received: 21/07/2025 ; Accepted : 17/12/2025 ; Published : 19/01/2026

Abstract

The teaching and learning of chemical knowledge is the focus of the discipline-based educational research field of chemistry didactics. It focusses on how teachers filter scientific knowledge, how students build chemical concepts, and how instructional strategies might be created to foster deep conceptual comprehension. By analyzing the theoretical underpinnings, significant pedagogical issues, and current advancements particularly in inquiry-based learning, laboratory instruction, and digital transformation

this article offers a thorough scholarly overview of chemistry didactics. The purpose of the paper is to support higher education recruitment and professional development contexts, as well as to contribute to scholarly discourse on successful chemistry teaching.

Keywords: Chemistry didactics, chemistry education, inquiry-based learning, laboratory teaching, digital technologies.

1. Introduction

Modern science and technology rely heavily on chemistry to support advancements in materials, energy, health, and environmental preservation.

Despite its significance, many students perceive chemistry as a challenging subject. One of the primary difficulties in teaching chemistry lies in the inherently abstract nature of its concepts. Unlike subjects that deal with directly observable phenomena, many chemical ideas such as atomic structure, molecular interactions, or reaction mechanisms can not be directly perceived by students. For instance, the behavior of electrons in a chemical bond or the formation of transient intermediates during a reaction exists at a level that is invisible to the naked eye. This abstraction creates a significant barrier to understanding, as students must rely on indirect evidence, models, and representations to make sense of these phenomena.

Adding to this challenge is the symbolic language of chemistry. Chemical formulas, equations, and symbols serve as a shorthand to represent complex ideas efficiently. While these symbols are essential for communication within the scientific community, they often appear opaque to beginners. Students must not only memorize these symbols but also interpret them correctly and relate them to real-world processes. Misinterpretation of symbolic representations can lead to fundamental misconceptions—for example, confusing the coefficients and subscripts in chemical equations

or misunderstanding the meaning of oxidation states.

Moreover, chemistry requires the simultaneous use of multiple levels of representation: the macroscopic, submicroscopic, and symbolic. At the macroscopic level, students observe tangible phenomena, such as color changes, precipitation, or gas evolution. At the submicroscopic level, explanations involve atoms, ions, and molecules, which cannot be seen directly. Finally, the symbolic level uses formulas, equations, and diagrams to convey these phenomena.

For example, when studying acid-base reactions, a student must connect the observable reaction of vinegar with baking soda (macroscopic) to the production of ions in solution (submicroscopic) and then correctly express this using chemical equations (symbolic). Failure to integrate these levels can result in fragmented understanding, where students can perform calculations or recall definitions without truly grasping the underlying chemistry.

In conclusion, the abstract nature of chemical concepts, combined with the reliance on symbolic language and multiple representations, makes chemistry one of the more challenging sciences to teach and learn. In response to these challenges, chemistry didactics has emerged as a specialized field aiming to enhance the effectiveness of chemistry instruction through evidence-based pedagogical strategies [1].

2. Chemistry didactics: concept and scope

Chemistry didactics investigates the interactions between students, teachers, the learning environment, and chemical knowledge. Beyond methodological choices, it includes the analysis of students' prior knowledge and alternative conceptions, the epistemological study of chemical concepts, and the design of learning environments that facilitate conceptual change. The field draws on theories and insights from cognitive psychology, constructivist learning theory, educational technology, and the philosophy of science [2].

3. Theoretical Foundations of Chemistry Didactics

3.1 Constructivist Learning Theory

Constructivist theory posits that learning is an active process in which students construct new knowledge based on pre-existing cognitive structures. Research indicates that students often enter chemistry classrooms with misconceptions that conflict with scientific models [3]. Chemistry didactics emphasizes the identification and remediation of these misconceptions through inquiry-based activities, experimentation, and guided discussion, enabling learners to build accurate conceptual frameworks [4].

3.2 Multiple Representations in Chemistry Learning

A key contribution to chemistry didactics is the use of multiple representations. Chemical phenomena must be understood simultaneously at three levels: symbolic (equations and formulas), submicroscopic (particles and molecular interactions), and macroscopic (observable changes). Difficulties in coordinating these representations are a major source of learning obstacles in chemistry [5]. Effective instruction therefore requires pedagogical strategies that explicitly link these levels, facilitating deeper understanding [6].

4. Pedagogical Challenges in Chemistry Education

Despite curricular reforms, chemistry teaching continues to face persistent challenges, including teacher-centered instruction, limited implementation of inquiry-based laboratories, and insufficient connections between chemical knowledge and real-world applications. These factors contribute to low student motivation and superficial learning outcomes [1]. Chemistry didactics seeks to overcome these difficulties by promoting active learning, contextualized problem-solving, and reflective teaching practices [2].

5. The role of laboratory work in chemistry didactics

Laboratory exercises are a central component of chemistry didactics. However, research shows that traditional confirmatory experiments often fail to foster deep conceptual understanding. Inquiry-oriented laboratory instruction, which engages students in generating questions, testing hypotheses, and analyzing data, has been shown to improve conceptual learning and scientific reasoning skills [7].

Contemporary chemistry didactics recommends laboratories that integrate experimentation, modeling, and guided discussion to maximize learning outcomes [8].

6. Chemistry didactics in the Digital Era

The integration of digital technologies has opened new opportunities in chemistry didactics. Virtual laboratories, simulations, and interactive visualizations allow students to explore chemical phenomena that are difficult, hazardous, or costly to observe in physical labs [9]. More recently, artificial intelligence systems have been employed to support personalized learning, formative assessment, and conceptual visualization. While these tools offer substantial pedagogical potential, their use must be guided by clear educational objectives and ethical considerations [10].

7. Contemporary research trends in chemistry didactics

Astolfi examined chemistry teachers' beliefs about instructional explanations and found that while teachers recognize the importance of explanations, many do not explicitly plan them to address students' prior knowledge. This suggests that teacher reflection and deliberate instructional design are essential for effective teaching. Recent research in chemistry didactics has explored a variety of aspects of teaching and learning chemistry, from teacher beliefs and professional development to student-centered approaches, digital tools, and laboratory instruction [11].

Professional development plays a critical role in enhancing chemistry teachers' pedagogical

approaches. Smith and Jones studied secondary teacher learning and conceptual change, showing that participation in reform-oriented professional development programs, which included modeling, animations, and reflective activities, led to meaningful changes in teachers' instructional beliefs and greater alignment with inquiry-based practices [12].

Student-centered learning approaches have been shown to significantly enhance engagement and understanding. Rahman and Khan investigated inquiry-based science education in chemistry classrooms and found that involving students in authentic research-style activities not only improves content knowledge but also strengthens their scientific communication skills, including both oral and written competencies [13]. Similarly, De Jong demonstrated that guided inquiry fosters critical thinking, problem-solving, and engagement, although students may require scaffolding to effectively evaluate hypotheses and interpret data [14]. Al-Harthy et al. further confirmed through a systematic review that guided inquiry approaches support active engagement and higher achievement but noted challenges such as time constraints and unfamiliarity with open-ended inquiry [15].

The integration of artificial intelligence in chemistry education is another emerging trend. Chen et al. conducted a comparative study on AI chatbots as cognitive partners in learning chemistry and found that these tools can support critical thinking, personalized learning, and problem-solving, provided that teachers guide their use with clear pedagogical objectives and appropriate prompt strategies [16]. Elmali et al. studied prequestioning strategies, where students are given key questions before lessons, and showed that this approach enhances learning outcomes by activating attention and prior knowledge, resulting in better retention and comprehension [17].

Differentiated instruction remains an important approach in chemistry classrooms. Hofstein and Lunetta surveyed secondary chemistry teachers and found variations in the implementation of differentiation strategies, highlighting the need for targeted professional training to meet diverse student needs [18]. Laboratory-based instruction continues to be a vital component of chemistry didactics. Taber reviewed laboratory education research and emphasized designing labs that promote genuine inquiry, align with curricular goals, and focus on student learning processes rather than traditional confirmatory exercises [19].

Finally, MARTINEZ Maria Eugenia and GOMEZ, Valeria conducted phenomenological research on teachers' experiences beyond traditional lecture methods, highlighting practical challenges in chemistry teaching. Their study underscored the importance of active learning strategies, student engagement, and teachers' ability to adapt instruction to complex content and classroom realities [20].

Together, these studies indicate that contemporary chemistry didactics emphasizes active, inquiry-based learning, thoughtful teacher professional development, integration of technology and AI, differentiated instruction, and laboratory-centered approaches. Collectively, they provide a rich evidence base for developing pedagogical strategies that enhance conceptual understanding, critical thinking, and scientific literacy in chemistry education.

8. Perspectives and future directions in chemistry didactics

The field of chemistry didactics is currently undergoing a significant transformation, driven by technological advancements, innovation in educational research, and evolving expectations for scientific literacy in higher education and beyond. Firstly, the integration of digital

technologies and artificial intelligence (AI) presents a promising direction for enhancing chemistry teaching and learning. Recent research has shown that AI tools such as chatbots and intelligent tutoring systems can act as *cognitive partners*, helping learners engage in deeper reasoning and personalized problem solving. However, these benefits are fully realized only when instructors receive adequate training in prompt design and pedagogically grounded integration of AI into chemistry instruction [21].

In conjunction with AI, technological integration within inquiry-based and active learning pedagogies is gaining attention. Studies applying frameworks such as TPACK have demonstrated that structured training can help pre-service chemistry teachers integrate digital tools effectively into inquiry-based environments, promoting students' core chemistry competencies and fostering inquiry skills that are essential for scientific practice in modern contexts [22]. Inquiry-based instruction itself continues to show positive impacts on students' attitudes toward science and their engagement, reinforcing its central role in chemistry didactics and supporting its systematic embedding across chemistry curricula [23].

Another key perspective involves immersive and interactive learning environments, particularly virtual and simulated laboratories. Systematic reviews highlight that virtual labs enrich chemistry education by integrating theoretical and practical elements, allowing students to conduct experiments independently and facilitating deeper conceptual understanding, especially when physical laboratory access is limited [24]. These environments also show potential to enhance student engagement and learning outcomes when paired with well-designed curricula and instructional support.

The potential of mobile and technology-enhanced inquiry is also rising. Research on mobile technology in abductive inquiry settings has demonstrated that

mobile-based simulations and web resources can support deeper engagement with chemical concepts such as chemical bonding, improving both understanding and learner motivation when compared to traditional approaches [25].

At the same time, project-based and interdisciplinary learning approaches that integrate chemistry with broader STEM and real-world applications are emerging as valuable directions. Such models enable students to connect chemical knowledge with digital skills, entrepreneurship, and problem solving, enhancing both academic competencies and career readiness for 21st century contexts [26].

From an instructional perspective, professional development remains critical. Evidence indicates that teacher preparation programs that emphasize integration of digital tools with pedagogical content knowledge can strengthen instructional practices, enabling educators to implement innovative strategies such as blended inquiry and technology-mediated investigation more effectively [27].

Parallel to pedagogical innovation, assessment practices need evolution to capture higher-order cognitive outcomes, metacognition, and transferable scientific skills rather than rote memorization. This shift requires curricular redesign efforts that align assessment with inquiry-based and technology-enhanced learning experiences [28].

Moreover, the ethical and equitable use of technology in chemistry education must be foregrounded. Research points to complex challenges surrounding access, cognitive load, and ethical considerations of AI in learning environments, highlighting the need for frameworks that support responsible implementation of digital tools while ensuring equitable access and learner support [29].

Finally, the global and contextual relevance of chemistry didactics should be a guiding priority. Instructional design must situate chemistry learning within real-world contexts such as environmental sustainability, energy systems, and health enabling students to apply their

knowledge ethically and meaningfully to societal challenges. Integrating these contexts into teaching not only deepens understanding but also cultivates scientifically literate citizens capable of addressing global needs [30].

In summary, the future of chemistry didactics lies in synthesizing AI and digital tool integration, inquiry-based and interdisciplinary learning, professional development, equitable access, and global relevance. These directions collectively elevate chemistry education to meet contemporary academic and societal demands while positioning educators as innovators in teaching and learning.

8. Conclusion

Because of the abstract character of chemical topics, the use of symbolic language, and the requirement that students move fluidly between macroscopic, submicroscopic, and symbolic representations, teaching and learning chemistry provide special and complex problems. Because they must convert observations from the real world into theoretical models and symbolic interpretations, these requirements frequently make chemistry a challenging topic for students. Without adequate instructional support, students may focus on memorization rather than meaningful learning, acquire fractured understanding, or harbor misconceptions.

Therefore, teaching chemistry effectively calls for pedagogical approaches that actively involve students in creating their own understanding rather than only imparting factual knowledge. By bridging the gap between observable occurrences and abstract concepts, methods including visual modelling, simulations, guided inquiry, and problem-based learning help students develop cohesive mental models. Fostering deeper comprehension and supporting the integration of knowledge across different levels of representation are two benefits of encouraging students to describe, depict, and portray chemical processes.

Furthermore, the duty of the educator goes beyond simply imparting knowledge; it also

involves fostering scientific literacy, critical thinking, and conceptual reasoning. In order to enable students to investigate, test, and consider chemical phenomena while progressively gaining autonomy and self-assurance in their thinking, educators must scaffold learning experiences.

References

- [1] RAHMAN, Tawabur et LEWIS, Scott E. Evaluating the evidence base for evidence-based instructional practices in chemistry through meta-analysis. *Journal of Research in Science Teaching*, 2020, vol. 57, no 5, p. 765-793.
- [2] DUDAS, Cecilia, RUNDGREN, Carl-Johan, et LUNDEGÅRD, Iann. Exploratory considerations in chemistry education—didactic modelling for complexity in students' discussions. *Science & Education*, 2023, vol. 32, no 2, p. 481-498.
- [3] TANG, Kuok Ho Daniel. Student-centered approach in teaching and learning: What does it really mean?. *Acta Pedagogia Asiana*, 2023, vol. 2, no 2, p. 72-83.
- [4] KERIMBAYEV, Nurassyl, UMIRZAKOVA, Zhanat, SHADIEV, Rustam, et al. A student-centered approach using modern technologies in distance learning: a systematic review of the literature. *Smart Learning Environments*, 2023, vol. 10, no 1, p. 61.
- [5] MELI, Kalliopi, KOLIOPoulos, Dimitrios, et LAVIDAS, Konstantinos. A model-based constructivist approach for bridging qualitative and quantitative aspects in teaching and learning the first law of thermodynamics. *Science & Education*, 2022, vol. 31, no 2, p. 451-485.
- [6] CRUCHO, Carina IC, GOMES, Mário JS, et AVÓ, João. A role-playing tabletop game on laboratory techniques and chemical reactivity: a game-based learning approach to organic chemistry education. *Chemistry Teacher International*, 2025, vol. 7, no 3, p. 455-470.
- [7]. FINNE, Laura Teinholt, GAMMELGAARD, Bente, et CHRISTIANSEN, Frederik Voetmann. When the lab work disappears: Students' perception of laboratory teaching for quality learning. *Journal of Chemical Education*, 2022, vol. 99, no 4, p. 1766-1774.
- [8] DÍEZ-PASCUAL, Ana M. et JURADO-SÁNCHEZ, Beatriz. Remote teaching of chemistry laboratory courses during COVID-19. *Journal of chemical education*, 2022, vol. 99, no 5, p. 1913-1922.
- [9] ALI, Sariah Binti, TALIB, Corrienna Abdul, et JAMAL, Abubakr Muhammed. Digital technology approach in chemistry education: A systematic literature review. *Journal of Natural Science and Integration*, 2023, vol. 6, no 1, p. 1-13.
- [10] UNAIDA, Ratna, LUKMAN, Isna Rezkia, et al. Perception of Prospective Teachers to the Needs of ICT in Chemical Learning in the Age of Digital Transformation. In : *Mathematics and Science Education International Seminar 2021 (MASEIS 2021)*. Atlantis Press, 2023. p. 299-306.
- [11] TAMAYO ALZATE, Oscar Eugenio. Critical thinking and epistemic sophistication in science education. *Journal of Intelligence*, 2025, vol. 13, no 8, p. 93.
- [12] SMITH, Cristine et GILLESPIE, Marilyn. Research on professional development and teacher change: Implications for adult basic education. In : *Review of Adult Learning and*

Literacy, Volume 7. Routledge, 2023. p. 205-244.

[13] MOMTAZ, Nayma. *Exploring the practice of teaching chemistry in Grades 7–9 in English medium schools in Bangladesh.* 2025. Thèse de doctorat. BRAC University.

[14] DE JONG, Ton, LAZONDER, Ard W., CHINN, Clark A., et al. Beyond inquiry or direct instruction: Pressing issues for designing impactful science learning opportunities. *Educational Research Review*, 2024, vol. 44, p. 100623.

[15] AL HARTHY, Sobhi Saeed, HAMMAD, Mohammad Ahmed, et AWED, Huda Shaaban. Association between social inclusion and mental health among people with disabilities engaged in sports clubs: a cross-sectional survey. *Frontiers in Psychology*, 2025, vol. 16, p. 1504352.

[16] CHEN, Bo-Jin, CHEN, Chih-Ming, et HUANG, Chieh-Ling. A Virtual 3D Chemistry Laboratory with an Enhanced AI Chatbot to Facilitate Learning Effectiveness. In : *2024 16th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI).* IEEE, 2024. p. 718-719.

[17] ELMALI, Filiz, ÖZDEMİR, Oğuzhan, et ŞANAL, Seda Özer. Are we catching up? Teaching Mathematics with Technology in Early Childhood Classrooms. *Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi*, 2025, vol. 26, no 1, p. 141-173.

[18] IBNUZAMAN, Siti Nur Fatin Hakimah, KHALID, Siti Sarah Mohd, SUBRAMANI, Thulasi, et al. Differentiated Instruction in Chemistry Education. *Sains Humanika*, 2024, vol. 16, no 3, p. 123-130.

[19] TABER, Keith S. *Chemical Pedagogy: Instructional Approaches and Teaching*

Techniques in Chemistry. Royal Society of Chemistry, 2024.

[20] MARTINEZ, Maria Eugenia et GOMEZ, Valeria. Active learning strategies: a mini review of evidence-based approaches. *Acta Pedagogia Asiana*, 2025, vol. 4, no 1, p. 43-54.

[21] MAKINDE, S. O. et OYENIYI, N. O. The Roles of Emerging Technology in Chemistry Teaching and Learning for a Sustainable Development. *Indonesian Journal of Teaching in Science*, 2024, vol. 4, no 2, p. 177-188.

[22] NUGRAHENI, Anggiyani Ratnaningtyas Eka et SRISAWASDI, Niwat. Development of pre-service chemistry teachers' knowledge of technological integration in inquiry-based learning to promote chemistry core competencies. *Chemistry Education Research and Practice*, 2025, vol. 26, no 2, p. 398-419.

[23] XAYRULLO O'G, Pardayev Ulug'bek, RAJABBOYOVNA, Kosimova Xurshida, et al. Incorporating Real-World Applications into Chemistry Curriculum: Enhancing Relevance and Student Engagement. *Fan va ta'l'm integratsiyasi (integration of science and education)*, 2024, vol. 2, no 1, p. 44-49.

[24] VERAWATI, Ni Nyoman Sri Putu et PURWOKO, Agus Abhi. Literature review on the use of interactive labs technology in the context of science education. *International Journal of Ethnoscience and Technology in Education*, 2024, vol. 1, no 1, p. 76-96.

[25] KADDOURA, Sanaa et AL HUSSEINY, Fatima. The rising trend of Metaverse in education: Challenges, opportunities, and ethical considerations. *PeerJ Computer Science*, 2023, vol. 9, p. e1252.

[26] XAYRULLO O'G, Pardayev Ulug'bek, RAJABBOYOVNA, Kosimova Xurshida, et al. Incorporating Real-World Applications into

Chemistry Curriculum: Enhancing Relevance and Student Engagement. *Fan va ta'lim integratsiyasi (integration of science and education)*, 2024, vol. 2, no 1, p. 44-49.

[27] AMEMASOR, Stephen Kwashie, OPPONG, Stephen Opoku, GHANSAH, Benjamin, *et al.* A systematic review on the impact of teacher professional development on digital instructional integration and teaching practices. In : *Frontiers in Education*. Frontiers Media SA, 2025. p. 1541031.

[28] KONYEME, JOSEPHINE E. et ALORDIAH, CAROLINE OCHUKO. Rethinking assessment: The need for authentic evaluation in Science Education. *University of Delta Journal of Multidisciplinary Research*, 2024, vol. 1, no 2, p. 68-81.

[29] MAHBUB, Salehin, WAFIK, HM Atif, UDDIN, Aftab, *et al.* Integration of technology in chemistry education at university level. *Cognizance Journal of Multidisciplinary Studies*, 2024, vol. 4, no 7, p. 9-19.

[30] KUMAR, Vishal et CHOUDHARY, Sanjiv Kumar. Reimagining Scientific Literacy: A Framework for Future-Focused Science Education. 2024.