

RESEARCH ARTICLE**WWW.PEGEGOG.NET**

Student Interaction with Artificial Intelligence Technologies in the Educational Process: Between Technical Efficiency and the Human Touch

Abdelkader Zidane¹, Abdelkader Ghelid²

¹ Laboratory of Literature and Languages, University Center Nour El Bachir, El Bayadh
Algeria. Email: a.zidane@cu-elbayadh.dz

²Laboratory of Literature and Languages, University Center Nour El Bachir, El Bayadh
Algeria. Email: a.ghelid@cu-elbayadh.dz

Received: 22.02.2025 ; Accepted: 15.07.2025 ; Published: 26.01.2026

Abstract:

This article examines student interaction with artificial intelligence technologies in the educational process, focusing on the balance between technical efficiency and the preservation of the human touch in education. It highlights how AI has evolved from a supportive tool into a structural component shaping learning environments, content organization, and interaction patterns. Through applications such as adaptive learning systems, intelligent tutoring, and immediate feedback, AI contributes to enhancing student engagement, motivation, and academic performance. However, the article also emphasizes critical pedagogical and ethical challenges associated with AI integration, including the absence of emotional intelligence, the risk of superficial learning, technological dependency, issues of academic integrity, and concerns related to privacy and the digital divide. The analysis underscores that, despite its technical effectiveness, AI cannot replace the human role of teachers in providing emotional support, ethical guidance, and meaningful social interaction. The study concludes that effective and sustainable student engagement depends on the conscious integration of AI within a human-centered pedagogical framework that complements, rather than supplants, human judgment and interaction.

Keywords: Artificial Intelligence in Education, Student Interaction, Student Engagement, Human Touch, Teacher's Role.

Introduction

Over the past decade, global educational systems have undergone a profound transformation driven by the rapid development of artificial intelligence (AI) technologies. AI has shifted from being a limited auxiliary tool to a structural component influencing the design of learning environments, the organization of content, and patterns of interaction in both traditional and virtual classrooms. This transformation has been accompanied by growing scholarly interest in examining the potential of AI to enhance educational quality, particularly in areas such as personalization, adaptive learning, and learning analytics (Holmes et al., 2019; OECD, 2021).

However, the expanding integration of AI in education has also generated increasing academic debate regarding its impact on the **nature of student engagement**, which is widely recognized as a cornerstone of effective learning. Contemporary educational literature emphasizes that engagement extends beyond mere cognitive exchange to include psychological, social, and emotional dimensions embodied in the pedagogical relationship between students and teachers, as well as in students' sense of support, belonging, and motivation (Kahu, 2013).

Within this context, recent studies can be broadly classified into two main perspectives: one that views AI as an opportunity to enhance student engagement through immediate feedback and personalized learning, and another critical perspective that warns against the potential erosion of the human dimension of education and the diminishing pedagogical role of the teacher due to excessive reliance on intelligent systems (Williamson & Eynon, 2020). Against this backdrop, the present article aims to analyze the nature of student interaction within AI-supported learning environments, while critically examining its possibilities and limitations in light of the enduring need to preserve the human touch in education.

Section One: Artificial Intelligence in Education – Conceptual and Functional Framework

1. Artificial Intelligence in Education: From Technical Concept to Pedagogical Agency

Artificial intelligence is commonly defined as the ability of computational systems to simulate certain human cognitive processes, such as learning, reasoning, and decision-making. In educational contexts, AI refers to the application of these capabilities to support learning processes and improve educational outcomes by analyzing learner data and adapting instructional content to individual needs (Luckin et al., 2016, p. 14).

Recent educational scholarship, however, has moved beyond this purely technical definition toward a more functional and pedagogical understanding of AI. Rather than viewing AI merely as a tool, researchers increasingly conceptualize it as an active agent within learning environments, capable of shaping learning pathways and influencing interaction patterns. Holmes et al. argue that AI in education represents “a shift in educational decision-making from purely human judgments to algorithmically informed decisions” (Holmes et al., 2019, p. 6).

This shift raises fundamental pedagogical questions regarding whether AI functions solely as a neutral intermediary or actively participates in structuring student engagement. When intelligent systems assess learner performance, recommend specific activities, and provide immediate feedback, they do not merely support learning but also reshape the relationship between students, content, and teachers. Understanding this dynamic is therefore a pedagogical necessity rather than a purely technical concern.

2. Educational Applications of AI and Their Impact on Interaction Patterns

The integration of AI into education has given rise to a range of applications that have significantly reconfigured patterns of student interaction. Among the most prominent are virtual tutors and educational chatbots, which rely on natural language processing to respond to students' questions and provide instant explanations. Empirical studies indicate that this form of interaction can enhance students' sense of autonomy and reduce anxiety associated with asking questions, particularly in online learning environments (Zawacki-Richter et al., 2019).

Similarly, AI-driven assessment systems have transformed evaluative interaction by shifting from delayed feedback to immediate formative responses. Nicol and Macfarlane-Dick emphasize that

effective feedback is a critical determinant of deep engagement, as it guides learners' self-regulation and awareness of their performance (Nicol & Macfarlane-Dick, 2006).

Adaptive learning platforms further enable personalized learning trajectories by responding to individual differences among students, thereby increasing engagement and motivation. Nevertheless, several scholars caution that algorithmic adaptation, despite its quantitative precision, remains limited in its capacity to account for the psychological and social contexts that human teachers routinely address (OECD, 2021).

Section One Summary

This discussion demonstrates that AI in education transcends its role as a technical instrument and functions as a structural framework reshaping interaction within the learning process. While its potential is significant, its educational effectiveness depends on a critical awareness of its limitations and on its integration within a human-centered pedagogical vision.

Section Two: Manifestations of Student Interaction with Artificial Intelligence Technologies

Student engagement has become a central concept in contemporary educational research due to its strong association with learning quality, depth, and sustainability. Engagement encompasses behavioral, cognitive, and emotional dimensions that reflect the degree to which learners are actively involved in the learning process (Fredricks et al., 2004). The incorporation of AI technologies into education has introduced notable transformations in these dimensions, warranting careful analysis.

1. Immediate Interaction and Rapid Feedback

One of the most salient features of AI-supported learning environments is the immediacy of system responses. Educational chatbots and intelligent tutoring systems provide instant support, reducing interruptions in learning and helping students address misconceptions in real time.

Research consistently shows that immediate feedback plays a decisive role in fostering cognitive engagement by enabling learners to adjust their strategies promptly (Shute, 2008). Moreover, studies suggest that AI systems offering rapid responses can significantly enhance engagement, particularly in self-directed and online learning contexts (Zawacki-Richter et al., 2019).

However, this immediacy also raises pedagogical concerns. Kirschner and Hendrick caution that excessive reliance on instant feedback may encourage superficial learning focused on quick answers rather than deep understanding (Kirschner & Hendrick, 2020, p. 87). Consequently, while speed enhances engagement, it requires pedagogical regulation to ensure meaningful learning.

2. Adaptive Learning and Individual Differences

AI-driven adaptive learning systems represent a major shift from standardized instruction to personalized learning pathways. Systematic reviews confirm that personalized instruction enhances engagement and motivation, especially for learners experiencing academic difficulties (Holmes et al., 2019).

Through continuous data analysis, AI systems adjust content complexity and pacing, promoting learner autonomy. Nonetheless, critical perspectives argue that algorithmic personalization cannot fully

capture learners' emotional and social realities, which often shape academic performance (Williamson & Eynon, 2020).

This comparison highlights a key distinction between **algorithmic adaptation** and **human pedagogical adaptation**: while the former excels in efficiency and precision, the latter remains indispensable for addressing affective and contextual dimensions of learning.

3. Academic Motivation and Performance

Motivation is a fundamental component of student engagement, and educational tools that fail to support it tend to have limited impact (Ryan & Deci, 2000). AI technologies can enhance motivation by providing continuous feedback, tracking progress, and visualizing achievement.

Empirical evidence indicates that intelligent systems can improve academic performance when used to support self-regulated learning (Dede et al., 2017). However, overreliance on externally driven digital incentives may undermine intrinsic motivation, making learners dependent on technological scaffolding (Kirschner & Hendrick, 2020).

These mixed findings suggest that AI's impact on motivation is contingent on pedagogical design and on the teacher's role in transforming external feedback into sustainable intrinsic motivation.

4. Social Interaction in Intelligent Learning Environments

Many AI applications emphasize individualized interaction between learner and system, prompting concerns about reduced opportunities for social engagement and collaborative learning. Some studies warn that excessive individualization may weaken social skills and collective learning practices (Biesta, 2015, p. 102).

Conversely, other research demonstrates that AI can support collaborative learning by organizing group work, analyzing participation, and providing feedback at the group level (Dede et al., 2017). These contrasting findings indicate that AI's influence on social interaction depends largely on instructional design and the mediating role of the teacher.

Section Two Summary

Student interaction with AI technologies is multifaceted, offering genuine opportunities to enhance engagement and motivation while simultaneously posing challenges related to superficial learning, dependency, and digital individualism. Understanding these dynamics requires a balanced, comparative analytical approach.

Section Three: Limits of Technological Interaction and Their Impact on the Human Dimension

Despite the demonstrated benefits of AI in education, student interaction within AI-driven environments remains constrained by inherent pedagogical and ethical limitations that reveal the system's inability to fully encompass the human dimensions of learning.

1. Absence of Emotional Intelligence

Emotional intelligence plays a crucial role in effective student engagement by fostering trust, reducing anxiety, and supporting motivation. Goleman emphasizes that learning is inseparable from emotion and that positive affective interaction enhances attention and motivation (Goleman, 1995, p. 27).

In contrast, AI systems lack genuine emotional understanding. Selwyn argues that their responses constitute functional simulations rather than authentic empathetic interactions (Selwyn, 2019, p. 91). This limitation can lead to feelings of emotional detachment, particularly among students requiring psychological support.

2. Overreliance on AI: From Empowerment to Dependency

While AI is often portrayed as an empowering tool, excessive reliance on intelligent systems can foster technological dependency. Kirschner and Hendrick warn that constant access to automated solutions may weaken learners' capacity for independent problem-solving (Kirschner & Hendrick, 2020, p. 112).

Educational psychology highlights the importance of "productive struggle" in deep learning (Bjork & Bjork, 2011). If AI systems consistently eliminate cognitive challenge, student engagement may become passive rather than generative.

3. Academic Integrity and Authentic Learning

The rise of generative AI tools has intensified concerns regarding academic integrity and authentic engagement. Bretag underscores that academic integrity is a prerequisite for meaningful learning, as it ensures that engagement reflects genuine intellectual effort (Bretag, 2016, p. 258).

Unregulated use of AI may transform engagement into a form of cognitive outsourcing, undermining critical thinking and academic writing skills (Cotton et al., 2023). Addressing this issue requires redefining AI as a learning support rather than a substitute for intellectual effort.

4. Privacy and the Digital Divide

Privacy concerns and unequal access to AI technologies significantly affect student engagement. Learners' trust in digital platforms diminishes when data protection is inadequate (OECD, 2021, p. 63). Moreover, the digital divide exacerbates inequities in interaction quality, reinforcing existing educational disparities (Selwyn, 2019, p. 134).

Section Three Summary

This analysis confirms that while AI can support student engagement, it cannot replace the human dimensions of education. Emotional support, ethical guidance, and the cultivation of learner autonomy remain fundamentally human responsibilities.

Section Four: Toward an Educational Integration of AI and the Human Touch

Contemporary educational scholarship increasingly agrees that the future of AI in education lies not in replacement but in **functional integration**. The central question has shifted from whether AI will replace teachers to how it can enhance student engagement while preserving human-centered education (Holmes et al., 2019).

1. Redefining the Teacher's Role

AI integration transforms the teacher's role from content transmitter to facilitator of interaction. While AI manages analysis and personalization, teachers guide engagement, interpret data within human contexts, and foster critical thinking (Dede et al., 2017). Biesta emphasizes that education inherently involves ethical and relational dimensions beyond technical efficiency (Biesta, 2015, p. 22).

2. Hybrid Learning Environments

Hybrid learning models, combining AI-driven personalization with face-to-face interaction, represent a promising framework for balanced engagement. Policy reports suggest that such environments enhance both cognitive and emotional engagement by integrating efficiency with dialogue and collaboration (OECD, 2021).

3. Addressing Individual Differences

Although AI excels at detecting academic differences, it cannot fully comprehend learners' psychological and social contexts. Teachers remain essential for interpreting these factors and providing holistic support (Williamson & Eynon, 2020).

Section Four Summary

Effective student engagement emerges from the integration of AI capabilities with human pedagogical judgment, ensuring that technological efficiency complements rather than supplants human interaction.

Conclusion

This article has demonstrated that student interaction with AI technologies constitutes a complex educational phenomenon characterized by both significant opportunities and critical challenges. AI enhances engagement through personalization, immediate feedback, and motivational support, yet its benefits remain limited when the human dimension of education is neglected.

The analysis underscores that AI lacks emotional intelligence and ethical judgment, making the teacher indispensable for sustaining meaningful engagement (Selwyn, 2019; Biesta, 2015). Consequently, the future of education depends not on technological substitution but on the conscious integration of AI within a human-centered pedagogical framework that ensures deep, equitable, and sustainable student engagement.

References

Biesta, G. (2015). *Good education in an age of measurement: Ethics, politics, democracy*. Routledge.

Bjork, R. A., & Bjork, E. L. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In M. A. Gernsbacher, R. W. Pew, L. M. Hough, & J. R. Pomerantz (Eds.), *Psychology and the real world: Essays illustrating fundamental contributions to society* (pp. 56–64). Worth Publishers.

Bretag, T. (2016). Challenges in addressing plagiarism in education. *PLoS Medicine*, 13(12), Article e1002183. <https://doi.org/10.1371/journal.pmed.1002183>

Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. *Innovations in Education and Teaching International*. Advance online publication. <https://doi.org/10.1080/14703297.2023.2190148>

Dede, C., Richards, J., & Saxberg, B. (2017). *Learning engineering for online education: Theoretical contexts and design-based examples*. Harvard Education Press.

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. *Review of Educational Research*, 74(1), 59–109. <https://doi.org/10.3102/00346543074001059>

Goleman, D. (1995). *Emotional intelligence: Why it can matter more than IQ*. Bantam Books.

Holmes, W., Bialik, M., & Fadel, C. (2019). *Artificial intelligence in education: Promises and implications for teaching and learning*. Center for Curriculum Redesign.

Kahu, E. R. (2013). Framing student engagement in higher education. *Studies in Higher Education*, 38(5), 758–773. <https://doi.org/10.1080/03075079.2011.598505>

Kirschner, P. A., & Hendrick, C. (2020). *How learning happens: Seminal works in educational psychology and what they mean in practice*. Routledge.

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). *Intelligence unleashed: An argument for AI in education*. Pearson Education.

Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: A model and seven principles of good feedback practice. *Studies in Higher Education*, 31(2), 199–218. <https://doi.org/10.1080/03075070600572090>

OECD. (2021). *Artificial intelligence in education: Challenges and opportunities*. OECD Publishing. <https://doi.org/10.1787/04d04cce-en>

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. *Contemporary Educational Psychology*, 25(1), 54–67. <https://doi.org/10.1006/ceps.1999.1020>

Selwyn, N. (2019). *Should robots replace teachers? AI and the future of education*. Polity Press.

Shute, V. J. (2008). Focus on formative feedback. *Review of Educational Research*, 78(1), 153–189. <https://doi.org/10.3102/0034654307313795>

Williamson, B., & Eynon, R. (2020). Historical threads, missing links, and future directions in the datafication of education. *Learning, Media and Technology*, 45(3), 223–237. <https://doi.org/10.1080/17439884.2020.1798995>

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education. *International Journal of Educational Technology in Higher Education*, 16(1), Article 39. <https://doi.org/10.1186/s41239-019-0171-0>