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 Abstract 

Residential security is transitioning from 

stand-alone burglar alarms to complex Cyber-

Physical Systems (CPS) tightly coupled with 

the Internet of Things (IoT). This evolution 

enables context-aware sensing, edge 

intelligence, and remote management but 

simultaneously increases system complexity, 

widens the attack surface, and raises 

challenging questions about interoperability, 

latency, and privacy. Existing research on 

smart home security is often fragmented, 

focusing on isolated protocols or specific 

computer vision algorithms without an 

integrated systems engineering perspective. 

This paper bridges this gap by offering a 

system-level analysis and a conceptual 

framework for residential electronic security. 

First, we develop a functional taxonomy of 

intrusion detection and analyze key sensing 

modalities (volumetric, perimetric, and video-

based) based on signal processing physics and 

performance metrics. Second, we critically 

evaluate communication architectures 

(Zigbee, Z-Wave, Thread/Matter), 

highlighting trade-offs in latency and 

resilience. Third, we examine the role of Edge 

Computing and Deep Learning in video 

analytics, presenting a latency model that 

contrasts cloud-centric and edge-centric 

processing. Finally, we propose an Autonomic 

Residential Security Architecture (ARSA) that 

integrates heterogeneous sensing, edge AI, and 

Federated Learning into a continuous "sense– 

 

analyze–plan–act–learn" loop. This 

architecture serves as a reference for designing 

resilient, privacy-aware, and self-managing 

security systems. 

 

Keywords: Cyber-Physical Systems (CPS), 

Smart Home Security, Internet of Things 

(IoT), Intrusion Detection, Edge Computing, 

Matter Protocol, Federated Learning, 

Cybersecurity. 

 1. Introduction 

The protection of residential spaces has 

traditionally relied on mechanical barriers and 

simple electromechanical circuits. The 

emergence of the Internet of Things (IoT) [1]–

[3] has fundamentally reshaped this landscape, 

transforming the modern home into a 

distributed Cyber-Physical System (CPS). 

Contemporary security systems now integrate 

volumetric motion detection, intelligent video 

surveillance, and automated actuators, all 

interconnected via diverse wireless protocols 

[4]. 

While these advancements offer improved 

situational awareness, they introduce 

significant engineering challenges. The 

reliance on cloud computing for critical tasks 

introduces latency and privacy risks, while the 

proliferation of wireless sensors expands the 

attack surface [5]. Furthermore, the market 

suffers from fragmentation, where proprietary 

ecosystems hinder the development of 

coherent, interoperable security solutions. 
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This paper addresses these challenges by 

providing a comprehensive systems 

engineering analysis. Unlike traditional 

surveys that list consumer devices, this study 

dissects the architectural integration of sensing 

physics, communication topology, and 

algorithmic decision-making. The primary 

contribution is the proposal of an Autonomic 

Residential Security Architecture (ARSA), 

which leverages Edge AI and Federated 

Learning to create a self-managing and 

privacy-preserving security shield. 

 2. Related Work 

The literature on IoT security is extensive but 

often segmented. Foundational surveys by 

Atzori et al. [1] and Al-Fuqaha et al. [6] 

established the architectural layers of IoT but 

did not focus specifically on residential 

security constraints. 

2.1. Smart Home Security Protocols 

Security analysis of home automation 

protocols has been a major research focus. 

Geneiatakis et al. [7] and Knight et al. [8] 

analyzed vulnerabilities in Zigbee and Wi-Fi, 

highlighting susceptibility to jamming and 

replay attacks. More recently, the release of the 

Matter standard [9] has prompted new studies 

on interoperability and IP-based security in 

smart homes [10], [11]. 

 

2.2. Edge Intelligence in Surveillance 

The shift from cloud to edge computing is 

well-documented. Shi et al. [12] articulated the 

vision of edge computing for latency-sensitive 

applications. In the context of security, Zhang 

and Wang [13] compared edge vs. cloud 

architectures, demonstrating the efficiency of 

local processing for anomaly detection. Recent 

advances in lightweight Convolutional Neural 

Networks (CNNs), such as YOLO Nano and 

MobileNet, have enabled real-time object 

detection on resource-constrained devices 

[14], [15]. 

2.3. Federated Learning for Privacy 

Federated Learning (FL), introduced by 

McMahan et al. [16], allows model training on 

decentralized data. Its application to Intrusion 

Detection Systems (IDS) in IoT has been 

explored by varying authors [17]–[19], 

focusing mostly on network traffic anomalies. 

However, the application of FL specifically for 

collaborative residential physical security 

remains an under-explored area which this 

paper aims to address. 

3. The Physics of Sensing and Detection 

Logic 

To engineer a robust system, one must 

understand the underlying physics of sensing 

modalities. We classify detection functions 

into Volumetric, Perimetric, and Visual 

categories. 

[Figure 1 Placeholder] 

(Instructions for drawing Figure 1: Draw a 

hierarchical tree diagram. Title: "Taxonomy of 

Residential Intrusion Detection". Root node 

branches into: 1. Volumetric (PIR, Microwave, 

Ultrasonic), 2. Perimetric (Magnetic Contacts, 

Glass Break, Vibration/Shock), 3. Visual (IP 

Cameras, Thermal Imaging), 4. Environmental 

(Contextual sensing). 
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Table 1. Taxonomy of Residential Intrusion Detection Technologies 

Level Parent Node Node / Technique Brief Description 

0 — Residential Intrusion 

Detection 

Root category covering intrusion detection 

in residential environments. 

1 Residential Intrusion 

Detection 

Volumetric Sensing Volumetric sensing of object motion 

within indoor spaces. 

1 Residential Intrusion 

Detection 

Perimetric Sensing Sensing along protected perimeters such as 

doors and windows. 

1 Residential Intrusion 

Detection 

Visual Sensing Visual-based sensing using image and 

video data. 

1 Residential Intrusion 

Detection 

Contextual Sensing Context-aware sensing based on audio and 

environmental cues. 

2 Volumetric Sensing PIR Sensors Passive infrared sensors for detecting 

human presence and motion. 

2 Volumetric Sensing Microwave Doppler Microwave Doppler-based motion 

detection sensors. 

2 Perimetric Sensing Magnetic Contacts Magnetic reed contacts for door and 

window status monitoring. 

2 Perimetric Sensing Glass Break 

(Acoustic) 

Acoustic sensing for detecting glass 

breakage events. 

2 Visual Sensing IP Cameras (CNNs) IP cameras integrated with CNN-based 

visual analytics. 

2 Visual Sensing Thermal Imaging Thermal imaging sensors for detecting 

objects via heat signatures. 

2 Contextual Sensing Audio Analytics Audio-based analytics for detecting 

anomalous acoustic events. 

 

 

3.1. Sensor Fusion and Mathematical 

Modeling 

Passive Infrared (PIR) sensors are ubiquitous 

but prone to false alarms caused by thermal 

noise. Modern engineering mitigates this via 

Sensor Fusion, typically pairing PIR with 

Microwave (MW) Doppler radar. The Doppler 

shift f_d for a target moving at velocity v is 

given by: 

 

 

where ƒt is the transmitted frequency, ƒr is 

the received frequency, θ  is the angle 

between the direction of motion and the radar 

beam, and  c  is the speed of light.   

Alarm = PIR ∧ MW 

 ensuring that an alarm is triggered only when 

both thermal differential and Doppler shift are 

detected simultaneously [20]. This 

significantly reduces the Nuisance Alarm Rate 

(NAR). 

 

 

 

3.2. Inertial and Spectral Analysis for 

Perimetric Protection   

Perimetric sensors, such as glass break 

detectors, rely on spectral and temporal 

analysis of sound signatures. A typical glass 

break event produces a characteristic pattern: 
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an initial low-frequency “thud” (often below 

200 Hz) as the object impacts the glass, 

followed by a high-frequency “crash” 

component (above 3 kHz) when the glass 

shatters.   

Commercial detectors implement band-pass 

filtering and time-windowing to detect this 

sequence. A trigger is asserted only if:   

▪ A low-frequency impulse is detected;   

▪ A high-frequency burst follows within 

a small time window 

Δt, typically  ms and  <150  

▪ The combined spectral energy matches 

a predefined glass break template [21].   

 

4. Communication Architectures: The 

Nervous System   

The communication subsystem serves as the 

nervous system of a residential security CPS. 

Its design dictates reliability, latency, energy 

efficiency, and resilience against both failures 

and attacks.   

4.1. Wireless Mesh vs Star Topologies   

Zigbee and Z-Wave adopt mesh topologies 

where nodes can relay messages for each other, 

extending range through multi-hop routing. Z-

Wave operates in the sub-GHz band and 

generally offers superior wall penetration 

compared to Zigbee at 2.4 GHz in concrete 

residential structures [22]. This makes Z-Wave 

particularly attractive for deeply embedded 

sensors (e.g., in basements or behind 

reinforced walls).   

Wi-Fi, by contrast, typically employs a star 

topology with access points at the center. It 

offers high throughput and broad device 

support, which is crucial for video 

transmission. However, its relatively high 

power consumption and contention-based 

medium access make it less suitable for low-

power, battery-operated sensors.   

A practical residential security deployment 

often combines these technologies: low-power 

sensors communicate over Zigbee, Z-Wave, or 

Thread, while video streams rely on Wi-Fi or 

Ethernet. A central hub or gateway bridges 

these domains and interfaces with cloud or 

edge services.   

 

4.2. The Role of Matter and Thread   

The industry is converging towards the Matter 

standard running over Thread and other IP-

capable transports [9]. Thread provides a low-

power IPv6 mesh network with self-healing 

capabilities and no single point of failure at the 

routing level. Matter, in turn, standardizes the 

application layer, enabling devices from 

different vendors to interoperate securely.   

Unlike several legacy consumer protocols, 

Matter mandates strong cryptographic 

primitives, including AES-128 encryption and 

authenticated commissioning, together with 

secure device attestation [11]. Furthermore, by 

adopting an IP-based stack, Matter facilitates 

direct and secure end-to-end communication 

between edge devices, local controllers, and 

cloud services, simplifying integration into 

larger CPS architectures. From a systems 

engineering viewpoint, this convergence 

significantly eases the design of scalable, 

interoperable, and security-enhanced 

residential systems.   

 

5. Edge Intelligence and Video Analytics   

5.1. Deep Learning at the Edge   

Traditional video-based motion detection, 

relying on simple pixel differencing or 

background subtraction, is increasingly 

inadequate in complex residential 

environments subject to lighting changes, 

shadows, and dynamic backgrounds. Modern 

systems instead employ CNN-based object 

detectors and classifiers deployed at the edge.   

Lightweight CNN architectures such as 

MobileNet and YOLO Nano can distinguish 

between humans, vehicles, and pets in real 

time on embedded platforms with constrained 

computational and energy budgets [23]. 

Deploying these models on edge devices (e.g., 

smart cameras or local hubs) offers several 

benefits:   
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- Reduced latency: Decisions can be made 

locally without round-trip communication to 

the cloud.   

- Improved privacy: Raw video can remain on-

premises; only alerts or anonymized features 

are transmitted.   

- Resilience to connectivity loss: Intrusion 

detection and local actuation continue to 

function in the absence of Internet 

connectivity.   

 

5.2. Latency Modeling: Edge vs Cloud   

 

For active deterrence mechanisms such as 

sirens, strobes, or fog generators, end-to-end 

latency is critical. We define the total system 

latency Ltotal as:   

Ltotal=Tcapture+Ttrans+Tproc+Tact 

 

where  Tcapture is the sensing/capture time, Ttrans 

is the communication delay, Tproc is the 

processing (inference) time, and Tact is the 

actuation delay.   

Table 2. Latency Comparison Between Cloud and Edge Architectures 

 

Architecture Transmission 

Time (ms) 

Processing 

Time (ms) 

Capture / Actuation 

Time (ms) 

Total 

Latency (ms) 

Cloud 

Architecture 

500 100 50 650 

Edge 

Architecture 

10 40 50 100 

 

Note: The above values are intended only to 

illustrate the significant latency gap 

between cloud‑based and edge‑based 

deployments.   

Table 2 compares cloud-centric and edge-

centric architectures using these representative 

values. In a cloud-centric design, Ttrans often 

dominates, with uplink latency easily reaching 

or exceeding several hundred milliseconds 

under real-world network conditions. In 

contrast, an edge-centric architecture keeps 

Ttrans small by processing data locally, 

reducing Ltotal to well below 100 ms in typical 

residential scenarios.   

Table 2. Comparative latency analysis of 

cloud-centric and edge-centric processing 

architectures.   

As illustrated conceptually in Fig. 2, cloud-

based architectures may yield total latencies on 

the order of hundreds of milliseconds (or 

more) due to network variability, which can be 

unacceptable for instant deterrence. Edge 

architectures, by minimizing dependence on 

wide-area networks, enable near-deterministic 

responses that are essential for immediate 

threat mitigation [24].   

 

6. Cybersecurity and Threat Landscape   

Residential security systems themselves are 

attractive targets for attackers, as 

compromising them provides both privacy-

sensitive information and potential physical 

access. The integration of wireless 

communication, cloud connectivity, and third-

party mobile applications introduces a broad 

and heterogeneous threat landscape.   

6.1. Attack Vectors in Residential CPS   

Key attack vectors include:   

▪ Wireless protocol attacks: Jamming, 

eavesdropping, replay, and key 

extraction on Zigbee, Z-Wave, Wi-Fi, 

or Thread links [7], [8].   

▪ Device compromise: Exploitation of 

vulnerabilities in firmware, 

bootloaders, or exposed debug 

interfaces, enabling persistent malware 

or unauthorized control.   
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▪ Cloud and API abuse: Attacks on 

cloud backends, REST APIs, or MQTT 

brokers to manipulate device states or 

exfiltrate data.   

▪ Mobile app exploitation: Reverse-

engineering of mobile applications, 

reuse of hard-coded keys, or abuse of 

weak authentication flows.   

A systems engineering approach requires 

modeling these threats at the architectural level 

rather than treating security as a set of isolated 

patches.   

6.2. Security Requirements   

From this threat analysis, we can derive key 

security requirements for residential CPS:   

▪ End-to-end confidentiality and 

integrity for all control and telemetry 

traffic.   

▪ Strong device identity and attestation, 

ensuring that only legitimate devices 

join the network.   

▪ Least-privilege access control, both for 

cloud services and local components.   

▪ Local fail-safe behavior: The system 

should degrade gracefully and safely 

under connectivity loss or partial 

compromise.   

▪  Privacy-by-design, limiting the 

exposure of raw sensor data and 

employing techniques such as on-

device processing and federated 

learning.   

These requirements inform the design of the 

Autonomic Residential Security Architecture 

described in the next section.   

 

7. Autonomic Residential Security 

Architecture (ARSA)   

7.1. Architectural Overview   

The proposed Autonomic Residential Security 

Architecture (ARSA) integrates heterogeneous 

sensing, edge AI, and federated learning within 

a layered CPS framework. The architecture 

comprises three principal layers:   

1. Physical Sensing Layer: PIR and 

microwave motion sensors, magnetic contacts, 

glass break detectors, smart locks and 

actuators, and IP/thermal cameras.   

2. Edge Intelligence Hub: A local gateway or 

home hub that aggregates sensor data, 

performs sensor fusion, runs CNN-based 

inference, and manages local policies.   

3. Cloud (Federated Server) Layer: A 

backend that coordinates federated learning, 

aggregates model updates from multiple 

homes, and distributes improved global 

models.   

Figure 3 provides a conceptual block diagram 

of ARSA, showing the data flows between 

sensors, the edge intelligence hub, and the 

federated cloud server.   

To complement Fig. 3, Table 3 summarizes the 

main layers, their internal components, and the 

data flows between them. 

 

 

Table 3. Layers, Components, and Data Flows in the Proposed ARSA System 

3‑A. Main Layers in the Proposed Architecture 

Layer Brief Description 

CLOUD LAYER (Federated 

Server) 

Central server responsible for aggregating and updating global 

models using federated learning. 

EDGE INTELLIGENCE 

HUB 

Home-resident edge node performing local inference and data 

processing. 

PHYSICAL SENSING 

LAYER 

Physical layer consisting of sensors and devices (cameras, motion 

sensors, smart locks, actuators). 
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Table 3-B. Components Within Each Layer and Their Functions 

 

Layer Component Role / Function 

CLOUD LAYER Global Model 

Database 

Stores the global model and aggregates 

encrypted model updates from edge nodes. 

EDGE INTELLIGENCE 

HUB 

Sensor Fusion 

Engine 

Fuses heterogeneous sensor data to produce a 

unified intrusion decision. 

EDGE INTELLIGENCE 

HUB 

Local CNN 

Inference 

Performs local CNN-based inference on image 

and video streams. 

EDGE INTELLIGENCE 

HUB 

Privacy & 

Encryption Gate 

Ensures privacy by uploading only encrypted 

model updates to the cloud. 

PHYSICAL SENSING 

LAYER 

PIR / Microwave 

Sensors 

Motion sensors for intrusion and human presence 

detection. 

PHYSICAL SENSING 

LAYER 

Smart Locks & 

Actuators 

Execute control actions such as locking, 

unlocking, and alarm triggering. 

PHYSICAL SENSING 

LAYER 

IP Cameras Provide video and image data for local edge 

analysis. 

 

Table 3-C. Data Flow Description 

From → To Arrow Style in 

Figure 

Purpose 

PIR / Microwave Sensors → 

Sensor Fusion Engine 

Solid black arrow Transmits sensor measurements to the 

edge fusion engine. 

IP Cameras → Local CNN 

Inference 

Solid black arrow Forwards video streams for local deep 

learning inference. 

Privacy & Encryption Gate → 

Global Model Database 

Dotted blue upward 

arrow 

Uploads encrypted model updates 

without sharing raw data. 

Global Model Database → Edge 

Intelligence Hub 

Dotted red 

downward arrow 

Distributes the updated global model 

back to edge nodes. 

 

7.2. Sense–Analyze–Plan–Act–Learn Loop   

ARSA is designed around a continuous 

autonomic control loop:   

▪ Sense: Physical sensors and cameras 

capture environmental data regarding 

motion, door/window status, and visual 

scenes.   

▪ Analyze: The edge hub fuses multi-

modal signals (e.g., PIR + MW + visual 

cues) and applies CNN-based analytics 

to classify events (e.g., human vs pet vs 

vehicle).   

▪ Plan: Based on policies, context (time 

of day, occupancy state), and threat 

level, the system selects a response 

strategy (e.g., local alarm only, silent 

notification, or active deterrence).   

▪ Act: Smart locks, sirens, lights, and 

other actuators execute the selected 

response within tight latency 

constraints.   

▪  Learn: Periodically, the edge hub 

computes gradient updates or 

compressed feature statistics and sends 

them to the federated server. The cloud 

aggregates these updates across many 

homes and disseminates improved 

models back to the edge.   

This loop enables ARSA to adapt over time to 

changing environments, occupant habits, and 
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evolving threat patterns while minimizing 

manual configuration.   

7.3. Privacy and Federated Learning   

A core design tenet of ARSA is to avoid 

transmitting raw sensor data, particularly video 

and audio, to the cloud. Instead, model training 

leverages federated learning:   

▪ Edge devices train local models on 

their private data.   

▪ Only anonymized model updates or 

gradients, optionally protected with 

secure aggregation and encryption, are 

sent to the cloud.   

▪ The cloud server aggregates these 

updates into a global model and returns 

it to participating homes.   

This approach reduces privacy risks associated 

with centralized data storage while still 

allowing the system to benefit from cross-

home learning, such as improved detection of 

rare or emerging intrusion patterns.  

  

8. Discussion   

The proposed ARSA framework illustrates 

how a systems engineering perspective can 

unify sensing physics, communication 

infrastructure, AI algorithms, and security 

requirements into a coherent architecture. 

Several practical considerations remain:   

▪ Deployment heterogeneity: Legacy 

devices without Matter/Thread support 

will coexist with newer, IP-based 

nodes, requiring backward-compatible 

gateways.   

▪ Resource constraints: Not all homes 

will have sufficient edge computing 

resources to run advanced CNNs; 

tiered deployment strategies may be 

needed.   

▪ Model drift and evaluation: In 

federated learning, detecting concept 

drift and ensuring robust global model 

evaluation without access to raw data is 

challenging.   

▪ User acceptance: System complexity 

must be hidden behind user-friendly 

interfaces, and privacy assurances must 

be communicated clearly to occupants.   

 

These issues highlight promising avenues for 

future applied research and pilot deployments.   

9. Conclusion and Future Work   

This paper has presented a system-level 

perspective on residential electronic security in 

the IoT era. We developed a taxonomy of 

sensing modalities grounded in sensing 

physics, analyzed volumetric and perimetric 

detection logic, and discussed the implications 

of different communication architectures. We 

then examined the role of edge intelligence and 

CNN-based video analytics, emphasizing 

latency as a key design constraint. Building on 

these foundations, we introduced the 

Autonomic Residential Security Architecture 

(ARSA), which integrates heterogeneous 

sensing, edge AI, and federated learning into a 

continuous sense–analyze–plan–act–learn 

loop designed to be resilient, privacy-aware, 

and self-managing.   

Future work includes implementing and 

experimentally validating ARSA in real 

residential testbeds, quantitatively evaluating 

detection performance, latency, and privacy 

benefits, and extending the architecture to 

incorporate formal verification of safety and 

security properties. Furthermore, integrating 

explainable AI techniques could improve 

transparency and user trust in automated 

security decisions. 
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