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Abstract

Residential security is transitioning from
stand-alone burglar alarms to complex Cyber-
Physical Systems (CPS) tightly coupled with
the Internet of Things (IoT). This evolution
enables sensing,  edge
intelligence, and remote management but
simultaneously increases system complexity,
widens the attack surface, and raises
challenging questions about interoperability,
latency, and privacy. Existing research on
smart home security is often fragmented,
focusing on isolated protocols or specific
computer vision algorithms without an

context-aware

integrated systems engineering perspective.
This paper bridges this gap by offering a
system-level analysis and a conceptual
framework for residential electronic security.
First, we develop a functional taxonomy of
intrusion detection and analyze key sensing
modalities (volumetric, perimetric, and video-
based) based on signal processing physics and
performance metrics. Second, we critically
evaluate communication architectures
(Zigbee, Z-Wave, Thread/Matter),
highlighting  trade-offs in latency and
resilience. Third, we examine the role of Edge
Computing and Deep Learning in video
analytics, presenting a latency model that
contrasts cloud-centric and edge-centric
processing. Finally, we propose an Autonomic
Residential Security Architecture (ARSA) that
integrates heterogeneous sensing, edge Al, and
Federated Learning into a continuous "sense—

analyze—plan—act—learn" loop. This
architecture serves as a reference for designing
resilient, privacy-aware, and self-managing
security systems.

Keywords: Cyber-Physical Systems (CPS),
Smart Home Security, Internet of Things
(IoT), Intrusion Detection, Edge Computing,
Matter  Protocol, Federated Learning,
Cybersecurity.

1. Introduction

The protection of residential spaces has
traditionally relied on mechanical barriers and
simple electromechanical circuits. The
emergence of the Internet of Things (IoT) [1]-
[3] has fundamentally reshaped this landscape,
transforming the modern home into a
distributed Cyber-Physical System (CPS).
Contemporary security systems now integrate
volumetric motion detection, intelligent video
surveillance, and automated actuators, all
interconnected via diverse wireless protocols
[4].

While these advancements offer improved
situational ~ awareness, they introduce
significant engineering challenges. The
reliance on cloud computing for critical tasks
introduces latency and privacy risks, while the
proliferation of wireless sensors expands the
attack surface [5]. Furthermore, the market
suffers from fragmentation, where proprietary
ecosystems hinder the development of
coherent, interoperable security solutions.
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This paper addresses these challenges by
providing a  comprehensive
engineering analysis. Unlike traditional
surveys that list consumer devices, this study
dissects the architectural integration of sensing

systems

physics, communication topology, and
algorithmic decision-making. The primary
contribution is the proposal of an Autonomic
Residential Security Architecture (ARSA),
which leverages Edge Al and Federated
Learning to create a self-managing and
privacy-preserving security shield.

2. Related Work

The literature on loT security is extensive but
often segmented. Foundational surveys by
Atzori et al. [1] and Al-Fuqaha et al. [6]
established the architectural layers of 10T but
did not focus specifically on residential
security constraints.

2.1. Smart Home Security Protocols
Security analysis of home automation
protocols has been a major research focus.
Geneiatakis et al. [7] and Knight et al. [8]
analyzed vulnerabilities in Zigbee and Wi-Fi,
highlighting susceptibility to jamming and
replay attacks. More recently, the release of the
Matter standard [9] has prompted new studies
on interoperability and IP-based security in
smart homes [10], [11].

2.2. Edge Intelligence in Surveillance

The shift from cloud to edge computing is
well-documented. Shi et al. [12] articulated the
vision of edge computing for latency-sensitive
applications. In the context of security, Zhang

and Wang [13] compared edge vs. cloud
architectures, demonstrating the efficiency of
local processing for anomaly detection. Recent
advances in lightweight Convolutional Neural
Networks (CNNs), such as YOLO Nano and
MobileNet, have enabled real-time object
detection on resource-constrained devices
[14], [15].

2.3. Federated Learning for Privacy
Federated Learning (FL), introduced by
McMahan et al. [16], allows model training on
decentralized data. Its application to Intrusion
Detection Systems (IDS) in IoT has been
explored by varying authors [17]-[19],
focusing mostly on network traffic anomalies.
However, the application of FL specifically for
collaborative residential physical security
remains an under-explored area which this
paper aims to address.

3. The Physics of Sensing and Detection
Logic

To engineer a robust system, one must
understand the underlying physics of sensing
modalities. We classify detection functions
into Volumetric, Perimetric, and Visual
categories.

[Figure 1 Placeholder]

(Instructions for drawing Figure 1: Draw a
hierarchical tree diagram. Title: "Taxonomy of
Residential Intrusion Detection". Root node
branches into: 1. Volumetric (PIR, Microwave,
Ultrasonic), 2. Perimetric (Magnetic Contacts,
Glass Break, Vibration/Shock), 3. Visual (IP
Cameras, Thermal Imaging), 4. Environmental
(Contextual sensing).
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Table 1.

Taxonomy of Residential Intrusion Detection Technologies

Level | Parent Node Node / Technique Brief Description
0 — Residential Intrusion | Root category covering intrusion detection
Detection in residential environments.
1 Residential Intrusion | Volumetric Sensing | Volumetric sensing of object motion
Detection within indoor spaces.
1 Residential Intrusion | Perimetric Sensing Sensing along protected perimeters such as
Detection doors and windows.
1 Residential Intrusion | Visual Sensing Visual-based sensing using image and
Detection video data.
1 Residential Intrusion | Contextual Sensing | Context-aware sensing based on audio and
Detection environmental cues.
2 Volumetric Sensing | PIR Sensors Passive infrared sensors for detecting
human presence and motion.
2 Volumetric Sensing | Microwave Doppler | Microwave Doppler-based motion
detection sensors.
2 Perimetric Sensing Magnetic Contacts Magnetic reed contacts for door and
window status monitoring.
2 Perimetric Sensing Glass Break | Acoustic sensing for detecting glass
(Acoustic) breakage events.
2 Visual Sensing IP Cameras (CNNs) | IP cameras integrated with CNN-based
visual analytics.
2 Visual Sensing Thermal Imaging Thermal imaging sensors for detecting
objects via heat signatures.
2 Contextual Sensing | Audio Analytics Audio-based analytics for detecting
anomalous acoustic events.

3.1. Sensor Fusion and Mathematical
Modeling

Passive Infrared (PIR) sensors are ubiquitous
but prone to false alarms caused by thermal
noise. Modern engineering mitigates this via
Sensor Fusion, typically pairing PIR with
Microwave (MW) Doppler radar. The Doppler
shift f d for a target moving at velocity v is
given by:

2v fy cos O

Jo=fr—fr =

where f{ is the transmitted frequency, f is
the received frequency, 0 is the angle

between the direction of motion and the radar
beam, and c is the speed of light.

Alarm = PIR A MW

ensuring that an alarm is triggered only when
both thermal differential and Doppler shift are
detected simultaneously [20]. This
significantly reduces the Nuisance Alarm Rate
(NAR).

3.2. Imertial and Spectral Analysis for
Perimetric Protection

Perimetric sensors, such as glass break
detectors, rely on spectral and temporal
analysis of sound signatures. A typical glass
break event produces a characteristic pattern:
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an initial low-frequency “thud” (often below
200 Hz) as the object impacts the glass,
followed by a high-frequency “crash”
component (above 3 kHz) when the glass
shatters.
Commercial detectors implement band-pass
filtering and time-windowing to detect this
sequence. A trigger is asserted only if:
= A low-frequency impulse is detected;
= A high-frequency burst follows within
a small time window
At, typically ms and <150
= The combined spectral energy matches
a predefined glass break template [21].

4. Communication Architectures: The
Nervous System

The communication subsystem serves as the
nervous system of a residential security CPS.
Its design dictates reliability, latency, energy
efficiency, and resilience against both failures
and attacks.

4.1. Wireless Mesh vs Star Topologies
Zigbee and Z-Wave adopt mesh topologies
where nodes can relay messages for each other,
extending range through multi-hop routing. Z-
Wave operates in the sub-GHz band and
generally offers superior wall penetration
compared to Zigbee at 2.4 GHz in concrete
residential structures [22]. This makes Z-Wave
particularly attractive for deeply embedded
sensors (e.g., in basements or behind
reinforced walls).

Wi-Fi, by contrast, typically employs a star
topology with access points at the center. It
offers high throughput and broad device
support, which 1is crucial for video
transmission. However, its relatively high
power consumption and contention-based
medium access make it less suitable for low-
power, battery-operated sensors.

A practical residential security deployment
often combines these technologies: low-power
sensors communicate over Zigbee, Z-Wave, or
Thread, while video streams rely on Wi-Fi or
Ethernet. A central hub or gateway bridges

these domains and interfaces with cloud or
edge services.

4.2. The Role of Matter and Thread

The industry is converging towards the Matter
standard running over Thread and other IP-
capable transports [9]. Thread provides a low-
power IPv6 mesh network with self-healing
capabilities and no single point of failure at the
routing level. Matter, in turn, standardizes the
application layer, enabling devices from
different vendors to interoperate securely.
Unlike several legacy consumer protocols,
Matter mandates strong  cryptographic
primitives, including AES-128 encryption and
authenticated commissioning, together with
secure device attestation [11]. Furthermore, by
adopting an IP-based stack, Matter facilitates
direct and secure end-to-end communication
between edge devices, local controllers, and
cloud services, simplifying integration into
larger CPS architectures. From a systems
engineering viewpoint, this convergence
significantly eases the design of scalable,
interoperable, and security-enhanced
residential systems.

5. Edge Intelligence and Video Analytics
5.1. Deep Learning at the Edge

Traditional video-based motion detection,
relying on simple pixel differencing or
background subtraction, is increasingly
inadequate in complex residential
environments subject to lighting changes,
shadows, and dynamic backgrounds. Modern
systems instead employ CNN-based object
detectors and classifiers deployed at the edge.
Lightweight CNN architectures such as
MobileNet and YOLO Nano can distinguish
between humans, vehicles, and pets in real
time on embedded platforms with constrained
computational and energy budgets [23].
Deploying these models on edge devices (e.g.,
smart cameras or local hubs) offers several
benefits:
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- Reduced latency: Decisions can be made
locally without round-trip communication to
the cloud.

- Improved privacy: Raw video can remain on-
premises; only alerts or anonymized features
are transmitted.

- Resilience to connectivity loss: Intrusion
detection and local actuation continue to
function in the absence of Internet
connectivity.

5.2. Latency Modeling: Edge vs Cloud

For active deterrence mechanisms such as
sirens, strobes, or fog generators, end-to-end
latency is critical. We define the total system
latency Litotal as:

Ltota1:Tcapture+Ttrans+Tproc+Tact

where Tecapture 1S the sensing/capture time, Tirans
is the communication delay, Tpoc is the
processing (inference) time, and Ta is the
actuation delay.

Table 2. Latency Comparison Between Cloud and Edge Architectures

Architecture Transmission Processing Capture / Actuation | Total

Time (ms) Time (ms) Time (ms) Latency (ms)
Cloud 500 100 50 650
Architecture
Edge 10 40 50 100
Architecture

Note: The above values are intended only to
illustrate the significant latency gap
between cloud-based and edge-based
deployments.

Table 2 compares cloud-centric and edge-
centric architectures using these representative
values. In a cloud-centric design, Tians often
dominates, with uplink latency easily reaching
or exceeding several hundred milliseconds
under real-world network conditions. In
contrast, an edge-centric architecture keeps
Twans small by processing data locally,
reducing Lol to well below 100 ms in typical
residential scenarios.

Table 2. Comparative latency analysis of
cloud-centric and edge-centric processing
architectures.

As illustrated conceptually in Fig. 2, cloud-
based architectures may yield total latencies on
the order of hundreds of milliseconds (or
more) due to network variability, which can be
unacceptable for instant deterrence. Edge
architectures, by minimizing dependence on
wide-area networks, enable near-deterministic

responses that are essential for immediate
threat mitigation [24].

6. Cybersecurity and Threat Landscape
Residential security systems themselves are
attractive  targets  for  attackers, as
compromising them provides both privacy-
sensitive information and potential physical
access. The integration of  wireless
communication, cloud connectivity, and third-
party mobile applications introduces a broad
and heterogeneous threat landscape.
6.1. Attack Vectors in Residential CPS
Key attack vectors include:
= Wireless protocol attacks: Jamming,
eavesdropping, replay, and key
extraction on Zigbee, Z-Wave, Wi-Fi,
or Thread links [7], [8].
= Device compromise: Exploitation of
vulnerabilities n firmware,
bootloaders, or exposed debug
interfaces, enabling persistent malware
or unauthorized control.
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* Cloud and API abuse: Attacks on
cloud backends, REST APIs, or MQTT
brokers to manipulate device states or
exfiltrate data.

= Mobile app exploitation: Reverse-
engineering of mobile applications,
reuse of hard-coded keys, or abuse of
weak authentication flows.

A systems engineering approach requires
modeling these threats at the architectural level
rather than treating security as a set of isolated
patches.

6.2. Security Requirements

From this threat analysis, we can derive key
security requirements for residential CPS:

= End-to-end confidentiality and
integrity for all control and telemetry
traffic.

= Strong device identity and attestation,
ensuring that only legitimate devices
join the network.

= Least-privilege access control, both for
cloud services and local components.

= Local fail-safe behavior: The system
should degrade gracefully and safely
under connectivity loss or partial
compromise.

=  Privacy-by-design,  limiting the
exposure of raw sensor data and
employing techniques such as on-
device processing and federated
learning.

These requirements inform the design of the
Autonomic Residential Security Architecture
described in the next section.

7. Autonomic Residential
Architecture (ARSA)
7.1. Architectural Overview

Security

The proposed Autonomic Residential Security
Architecture (ARSA) integrates heterogeneous
sensing, edge Al, and federated learning within
a layered CPS framework. The architecture
comprises three principal layers:

1. Physical Sensing Layer: PIR and
microwave motion sensors, magnetic contacts,
glass break detectors, smart locks and
actuators, and IP/thermal cameras.

2. Edge Intelligence Hub: A local gateway or
home hub that aggregates sensor data,
performs sensor fusion, runs CNN-based
inference, and manages local policies.

3. Cloud (Federated Server) Layer: A
backend that coordinates federated learning,
aggregates model updates from multiple
homes, and distributes improved global
models.

Figure 3 provides a conceptual block diagram
of ARSA, showing the data flows between
sensors, the edge intelligence hub, and the
federated cloud server.

To complement Fig. 3, Table 3 summarizes the
main layers, their internal components, and the
data flows between them.

Table 3. Layers, Components, and Data Flows in the Proposed ARSA System

3-A. Main Layers in the Proposed Architecture

Layer Brief Description

CLOUD LAYER (Federated | Central server responsible for aggregating and updating global
Server) models using federated learning.

HUB processing.

EDGE INTELLIGENCE | Home-resident edge node performing local inference and data

PHYSICAL
LAYER

SENSING | Physical layer consisting of sensors and devices (cameras, motion
sensors, smart locks, actuators).

1865



Table 3-B. Components Within Each Layer and Their Functions

Layer Component Role / Function

CLOUD LAYER Global Model | Stores the global model and aggregates
Database encrypted model updates from edge nodes.

EDGE INTELLIGENCE | Sensor Fusion | Fuses heterogeneous sensor data to produce a

HUB Engine unified intrusion decision.

EDGE INTELLIGENCE | Local CNN | Performs local CNN-based inference on image

HUB Inference and video streams.

EDGE INTELLIGENCE | Privacy & | Ensures privacy by uploading only encrypted

HUB Encryption Gate model updates to the cloud.

PHYSICAL SENSING | PIR / Microwave | Motion sensors for intrusion and human presence

LAYER Sensors detection.

PHYSICAL SENSING | Smart Locks & | Execute control actions such as locking,

LAYER Actuators unlocking, and alarm triggering.

PHYSICAL SENSING | IP Cameras Provide video and image data for local edge

LAYER analysis.

Table 3-C. Data Flow Description

From — To
Figure

Arrow Style in

Purpose

PIR / Microwave Sensors —
Sensor Fusion Engine

Solid black arrow

Transmits sensor measurements to the
edge fusion engine.

IP Cameras — Local CNN

Inference

Solid black arrow

Forwards video streams for local deep
learning inference.

Privacy & Encryption Gate —

Global Model Database arrow

Dotted blue upward

Uploads encrypted model updates
without sharing raw data.

Global Model Database — Edge
Intelligence Hub

Dotted

downward arrow

red | Distributes the updated global model

back to edge nodes.

7.2. Sense—Analyze—Plan—Act—Learn Loop
ARSA is designed around a continuous
autonomic control loop:
= Sense: Physical sensors and cameras
capture environmental data regarding
motion, door/window status, and visual
scenes.
= Analyze: The edge hub fuses multi-
modal signals (e.g., PIR + MW + visual
cues) and applies CNN-based analytics
to classify events (e.g., human vs pet vs
vehicle).
= Plan: Based on policies, context (time
of day, occupancy state), and threat
level, the system selects a response

strategy (e.g., local alarm only, silent
notification, or active deterrence).

= Act: Smart locks, sirens, lights, and
other actuators execute the selected
response  within  tight
constraints.

= Learn: Periodically, the edge hub
computes  gradient updates or
compressed feature statistics and sends
them to the federated server. The cloud
aggregates these updates across many
homes and disseminates improved
models back to the edge.

This loop enables ARSA to adapt over time to

latency

changing environments, occupant habits, and
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evolving threat patterns while minimizing
manual configuration.

7.3. Privacy and Federated Learning

A core design tenet of ARSA is to avoid
transmitting raw sensor data, particularly video
and audio, to the cloud. Instead, model training
leverages federated learning:

= Edge devices train local models on
their private data.

* Only anonymized model updates or
gradients, optionally protected with
secure aggregation and encryption, are
sent to the cloud.

= The cloud server aggregates these
updates into a global model and returns
it to participating homes.

This approach reduces privacy risks associated
with centralized data storage while still
allowing the system to benefit from cross-
home learning, such as improved detection of
rare or emerging intrusion patterns.

8. Discussion
The proposed ARSA framework illustrates
how a systems engineering perspective can
unify  sensing physics, communication
infrastructure, Al algorithms, and security
requirements into a coherent architecture.
Several practical considerations remain:
= Deployment heterogeneity: Legacy
devices without Matter/Thread support
will coexist with newer, IP-based
nodes, requiring backward-compatible
gateways.
= Resource constraints: Not all homes
will have sufficient edge computing
resources to run advanced CNNs;
tiered deployment strategies may be
needed.
= Model drift and evaluation: In
federated learning, detecting concept
drift and ensuring robust global model
evaluation without access to raw data is
challenging.
= User acceptance: System complexity
must be hidden behind user-friendly

interfaces, and privacy assurances must
be communicated clearly to occupants.

These issues highlight promising avenues for
future applied research and pilot deployments.
9. Conclusion and Future Work

This paper has presented a system-level
perspective on residential electronic security in
the IoT era. We developed a taxonomy of
sensing modalities grounded in sensing
physics, analyzed volumetric and perimetric
detection logic, and discussed the implications
of different communication architectures. We
then examined the role of edge intelligence and
CNN-based video analytics, emphasizing
latency as a key design constraint. Building on
these foundations, we introduced the
Autonomic Residential Security Architecture
(ARSA), which integrates heterogeneous
sensing, edge Al and federated learning into a
continuous sense—analyze—plan—act—learn
loop designed to be resilient, privacy-aware,
and self-managing.

Future work includes implementing and
experimentally validating ARSA in real
residential testbeds, quantitatively evaluating
detection performance, latency, and privacy
benefits, and extending the architecture to
incorporate formal verification of safety and
security properties. Furthermore, integrating
explainable AI techniques could improve
transparency and user trust in automated
security decisions.
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