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Abstract

This article aims to elucidate the
growing role of machine learning-based
predictive models in clinical and school
psychology, with a particular focus on the
Random Forest (RF) algorithm as a robust
and versatile model. The article highlights the
limitations of traditional psychological
prediction  methods—such  as  linear
regression and factor analysis—in contrast to
the superior capacity of intelligent models to
handle complex and multidimensional data.
Furthermore, it presents the theoretical
framework of Random Forests, detailing its
core  principles, including  bootstrap
sampling, the construction of multiple
decision trees, and the voting or averaging

mechanisms used to achieve precise

estimates.

The paper discusses the applications of
this model in the clinical field, such as
predicting the likelihood of psychological

disorders and identifying diagnostic patterns,

as well as in the school context, by estimating
the risks of learning disabilities, school
dropout, and academic performance. It also
reviews recent literature demonstrating the
efficacy of Random Forests in psychological
diagnosis and prediction. The discussion
further examines the model's advantages—
specifically its statistical power and ability to
mitigate overfitting—alongside its challenges,
particularly regarding interpretability. The
article concludes by emphasizing the necessity
for further applied research to integrate this
model with more advanced techniques to
enhance

predictive  accuracy in the

psychological sciences.

Keywords: Random Forests; Predictive

Models;  Machine  Learning;  Clinical
Psychology; School Psychology; Learning
Disabilities;

Psychological Prediction;

Decision Trees.
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Introduction

Prediction constitutes one of the
fundamental pillars of modern psychology,
both in clinical and school settings.
Researchers and practitioners seek to
understand psychological and behavioral
phenomena in a manner that enables them to
anticipate future outcomes and implement
early interventions for prevention or treatment.
Prediction in psychology is not merely limited
to describing the current state; it extends to
forecasting the likelihood of developing
psychological or behavioral disorders or
estimating students' academic performance
levels, thereby providing psychologists with a
powerful tool for decision-making (Kuhn &
Johnson, 2020, p. 35).

In the clinical field, prediction is the
cornerstone of early diagnosis for mental
disorders such as depression, anxiety, or
schizophrenia, as well as evaluating response
to  psychological or  pharmacological
treatments. The more accurately a psychologist
can predict the course of a condition, the more
effective the therapeutic interventions become,
and the lower the relapse rates. In school
psychology, the importance of prediction
manifests in identifying students at risk of
learning disabilities, academic dropout, or
deviant behaviors, allowing for the design of
effective preventive and remedial strategies

(Bzdok & Meyer-Lindenberg, 2018, p. 112).

However, the fundamental challenge
lies in the limitations of the traditional models
upon which psychology has relied for decades.
Classical statistical models, such as linear
regression and factor analysis, have been
dominant tools in psychological research.
Despite their importance, they often fail to
handle complex, multidimensional data and
struggle to represent non-linear relationships
between variables. These constraints reduce
predictive accuracy and limit the ability to
apply findings in real-world contexts (Yarkoni

& Westfall, 2017, p. 100).

With the technological surge and the
increasing volume of psychological data—
electronic

derived from surveys,

neurobiological ~ measures, or  digital
footprints—there is an emergent need to adopt
machine learning (ML) algorithms as more
sophisticated and flexible tools. These
algorithms are characterized by their ability to
process massive amounts of data, uncover
hidden patterns, and build high-precision
predictive models. Among these algorithms,
Random Forests (RF) occupy a prominent
position due to the balance they offer between

predictive power and ease of application

(Breiman, 2001, p. 5).

Random Forests are based on the
principle of ensemble learning, where a large
number of decision trees are constructed on
different subsets of the original data, and their

results are then combined through a voting or
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averaging mechanism. This strategy mitigates
the problem of overfitting, which often plagues
other models, and enhances predictive
accuracy by leveraging statistical diversity.
Consequently, Random Forests have become a
promising model in applied psychology, given
their capacity to handle the imbalanced and
multidimensional data that characterize
psychological phenomena (James, Witten,

Hastie, & Tibshirani, 2013, p. 315).

From this perspective, the research
problem of this article emerges: How can
Random Forests provide added value for
prediction in  psychological  contexts,
specifically within the clinical and school
fields? To answer this question, this article

seeks to achieve the following objectives:

1. Present the theoretical foundations
upon which the Random Forest model

is built.

2. Demonstrate its practical applications

in clinical and school psychology.

3. Discuss its primary advantages and
limitations  compared to  other

predictive models.

Addressing this problem not only contributes
to enriching the academic debate regarding the
utilization of artificial intelligence in
psychology but also reflects a global trend
toward integrating advanced statistical
analysis with psychological practice, thereby

achieving the greatest benefit for researchers,

practitioners, and students alike (Shatte,

Hutchinson, & Teague, 2019, p. 18).
2. Theoretical Framework

2.1. The Concept of Predictive Models in
Psychology

a. Defining Statistical and Psychological

Prediction

The concept of prediction in psychology
refers to the ability to utilize available
information regarding an individual or a group
to anticipate future behaviors or psychological
manifestations. Prediction is considered a core
objective of scientific research in this field,
alongside  description, explanation, and
intervention. A psychologist does not merely
seek to understand an individual's current state;
rather, they attempt to forecast future events
that may occur throughout the individual's
psychological, academic, or social
development (Cohen, Cohen, West, & Aiken,
2013, p. 55).

In the statistical domain, prediction is defined
as the use of a mathematical or algorithmic
model built on historical data to estimate the
values of new, unobserved variables. While
statistical prediction focuses on quantitative
precision, psychological prediction
emphasizes the understanding of human
phenomena. Consequently, it can be argued
that psychological prediction relies heavily on
statistical and mathematical tools, yet it retains

its specificity by accounting for human
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complexity and contextual and social factors

(Shmueli, 2010, p. 293).

In clinical psychology, prediction manifests,
for example, in estimating the likelihood of a
depressed patient relapsing post-treatment or
assessing a patient's potential response to
medication or Cognitive Behavioral Therapy
(CBT). In school psychology, prediction can
be used to estimate the probability of a student
failing a specific subject or their susceptibility
to developing learning disabilities in the future.
These predictions enable psychologists to
intervene early and design preventive
therapeutic or educational plans (Kuhn &

Johnson, 2020, p. 41).

b. The Difference Between Classical and

Intelligent Models

For decades, psychology has relied on classical

statistical models, such as:

e Linear Regression: Which assumes a
linear relationship between

independent and dependent variables.

e Factor Analysis: Used to extract
underlying structures behind a set of

variables.

o Logistic Regression: For estimating
the probability of a specific event

occurring.

Despite the importance of these models in
advancing psychological research, they face

several limitations, most notably:

1. Stringent assumptions, such as
linearity, normality of variable
distribution, and homoscedasticity

(homogeneity of variance).

2. Inability to handle complex or
imbalanced data, which are common

in psychological studies.

3. Limited predictive capacity in cases
where psychological, social, and
cultural factors overlap (Yarkoni &

Westfall, 2017, p. 1102).

With the emergence of intelligent models,
spearheaded by Machine Learning (ML)
algorithms, a radical shift has occurred in
psychological research approaches. These
models are not bound by rigid assumptions and

are capable of:
o Handling Big Data effectively.

e Discovering non-linear and complex

relationships between variables.

e Improving predictive accuracy through

iterative learning mechanisms.
Prominent intelligent models include:
e Decision Trees.
e« Random Forests (RF).
e Support Vector Machines (SVM).
o Artificial Neural Networks (ANN).

The transition from classical to intelligent

models represents an epistemological
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revolution in psychology. Researchers are no
longer restricted by rigid assumptions and can
now employ more flexible and accurate
algorithms. This has led to increasing interest
in intelligent models, particularly Random
Forests, in clinical and school research due to
their ability to predict behaviors and disorders
more realistically (Bzdok & Meyer-
Lindenberg, 2018, p. 227).

Mechanism of Random Forests
1. Bootstrap Sampling

The first step in constructing a Random Forest
involves selecting random sub-samples from
the original dataset using the Bootstrapping
method. In this approach, sampling with
replacement is performed, meaning that some
individuals may be selected multiple times
while others are excluded. Consequently, each
sub-model (decision tree) receives a slightly
different set of data, which enhances the
diversity among the trees (Efron & Tibshirani,

1994, p. 42).

This statistical diversity is essential for
reducing bias and increasing predictive
accuracy. If all trees were built on the same
data, their errors would be highly correlated,
thus diminishing the benefit of ensemble
learning. Conversely, employing multiple
random samples produces a forest of diverse
trees with uncorrelated errors, which

significantly improves the final result upon

integration (Hastie, Tibshirani, & Friedman,

2009, p. 587).
2. Building Decision Trees

Following the selection of the random sample,
a decision tree is constructed by partitioning
the data into nodes based on the most effective
predictive variables. However, Random
Forests introduce a crucial variation: at each
split, the algorithm selects a random subset of
features rather than utilizing all available

variables.

This technique aims to further increase the
variance between individual trees. If a single
variable is exceptionally dominant, it would
likely be chosen at the root node of every tree,
thereby reducing diversity. By introducing
randomness into feature selection, trees are
forced to branch out based on different
variables, allowing the model to learn a wider
variety of patterns within the data (Ho, 1998,
p. 160).

3. Collective Voting (Majority Voting /
Averaging)

Once a substantial number of trees (typically
hundreds or thousands) have been constructed,
their outputs are aggregated through a voting

mechanism:

e In Classification Problems: The final
decision is determined by the class that
receives the most votes (Majority

Voting).
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e In Continuous Predictive Problems
(Regression): The final output is the
Arithmetic Mean of the values

predicted by all trees (Averaging).

This simple principle reflects the power of
"The Wisdom of the Crowds." Even if
individual trees commit specific errors, the
collective average or majority vote minimizes
the impact of these outliers, thereby enhancing
the model's overall accuracy and stability

(Cutler et al., 2007, p. 94).
C. Statistical Foundations

1. Probability Theory Random Forests rely
on the principles of probability to interpret the
integration of individual tree results. Each
decision tree acts as a random variable
producing a specific estimate. According to the
Law of Large Numbers, the average of
estimates from a large number of trees
converges toward the true expected value of
the distribution (Casella & Berger, 2002, p.
211).

2. Variance Reduction One of the primary
advantages of Random Forests is their ability
to reduce variance. Individual models, such as
single decision trees, often suffer from high
variance—meaning their results fluctuate
significantly when introduced to new data. By
merging a large ensemble of trees, a significant
portion of the random variance inherent in each
tree is neutralized, leading to a more stable and

robust model (Breiman, 2001, p. 7).

3. Cross-Validation and Out-of-Bag (OOB)
Error Random Forests utilize the concept of
cross-validation uniquely through what is
known as Out-of-Bag Error. Since each tree
is built on a bootstrap sample, approximately
one-third of the data is automatically excluded
from the training of that specific tree. This
"excluded" data is used to test the tree's
accuracy, providing the researcher with an
internal estimate of the error rate without the
need for manual data splitting (Louppe, 2014,
p. 52).

This feature makes Random Forests a potent
tool for psychological research, as it allows for
accurate performance metrics even with small
sample sizes—a common constraint in clinical

and school studies.

D. Suitability for Clinical and School
Psychology

The integration of these statistical properties
makes Random Forests an ideal model for
psychological fields characterized by complex
and intertwined data. In Clinical Psychology,
the model can process multidimensional
data—including psychological scales,
biological markers, and therapeutic histories—
to predict the risk of onset or response to
treatment. In School Psychology, it facilitates
the integration of academic performance data,

classroom behaviors, and demographic

characteristics to forecast achievement levels
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or dropout risks (Shatte, Hutchinson, &
Teague, 2019, p. 20).

Thus, Random Forests represent more than just
a statistical algorithm; they are a strategic tool
that empowers psychologists to make
decisions based on precise data, ultimately
enhancing the quality of psychological

services provided to both students and patients.
3. Practical Applications
3.1. In Clinical Psychology

Predictive models are playing an increasingly
vital role in clinical psychology, aiming to
provide precise quantitative tools that assist in
the diagnosis of psychological disorders, the
forecasting of their trajectories, and the
prediction of treatment responses. Among
these models, Random Forests (RF) have
emerged as a robust tool due to their capacity
to handle complex, multidimensional data and
their high flexibility in both prediction and
classification. Consequently, they have
become a focal point of increasing interest in
modern clinical psychological research

(Breiman, 2001, p. 12).

o Predicting the Risk of Depression
and Anxiety: This represents one of
the fundamental areas for the
application of Random Forests. Early
diagnosis enables practitioners to
intervene rapidly before symptoms
exacerbate. For instance, research

indicates that employing Random

Forest algorithms on psychological
datasets—such as mood inventories,
stress levels, and daily behavioral
metrics—allows for the construction of
models  capable of  predicting
depression risk  with  accuracy
exceeding 85%, surpassing classical
models (Kessler et al., 2019, p. 214).
This superior performance is attributed
to the ability of RF to capture the
complex, non-linear patterns between
variables that methods like simple
linear regression or factor analysis

often fail to detect.

Differential Diagnosis
(Classification): In clinical practice,
distinguishing between mood and
anxiety  disorders, or  between
psychosis and severe depression, can
be challenging even for experienced
specialists, particularly when
symptoms overlap. Here, Random
Forests provide a tool capable of
classifying cases based on an extensive
array of clinical variables—including
medical history, demographic
characteristics, and psychometric test
results—while identifying the
variables  that  contribute  most
significantly to the differentiation
process (Cutler et al., 2007, p. 104).
Thus, it offers a qualitative addition to

psychological diagnosis, not only in
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terms of precision but also in providing
an interpretive understanding of the

sources of variation between cases.

Predicting Treatment Response:
Regarding the response to
psychotherapy or pharmacotherapy,
Random Forests have demonstrated a
high capacity to forecast the efficacy of
specific therapeutic modalities for
different patients. For example, in a
study involving  patients  with
treatment-resistant depression,
Random Forests were utilized to
predict patient response to Cognitive
Behavioral Therapy (CBT) versus
traditional pharmacological treatment.
The predictive model was able to
determine the likelihood of treatment
success with an accuracy rate higher
than 80% (Chekroud et al., 2016, p.
1432). These results reflect the
practical value of these models in
reducing the time and resources spent
on trial-and-error approaches with

treatments that may not be effective for

every patient.

Handling Missing Data: Random
Forests are characterized by their
robustness in handling missing data, a
common issue in clinical research
where participants may omit sensitive
information. While traditional models

suffer from decreased accuracy due to

incomplete data, Random Forests
allow for the estimation of missing
values without requiring the exclusion
of participants or the entire sample
(Stekhoven & Biithlmann, 2012, p.
118).

e Variable Importance: Random
Forests provide metrics for Variable
Importance, granting researchers the
ability to identify the factors most
influential in the development or
response of a disorder. For instance,
models may reveal that chronic stress
or weak social support are critical
variables in predicting relapses among
depressed patients, assisting specialists
in designing more precise,
individualized treatment plans (Garcia

et al., 2020, p. 55).
Challenges and Limitations

Nevertheless, the application of this algorithm
in the clinical field is not without constraints.
The "black box" nature of Random Forests
makes it difficult to fully interpret the results,
which may limit their acceptance among
practitioners who prefer models that are easily
explainable (Molnar, 2020, p. 87). Moreover,
building these models requires relatively large
datasets to achieve desired accuracy, which
can be challenging in certain psychological

studies with limited sample sizes.

1877



Conclusion of the Section: Despite these
challenges, Random Forests represent a
promising tool in clinical psychology. They
combine high predictive accuracy with the
ability to handle complex and incomplete data,
all while providing rich information on
variable importance. This makes them a
powerful addition to future diagnostic and
clinical intervention practices, especially given
the growing need for precise quantitative tools

to support therapeutic decision-making.
3.2. In School Psychology

The utility of Random Forests (RF) is not
confined to clinical settings; it extends
significantly to school psychology, which
focuses on understanding factors that influence
learning and academic achievement, as well as
the early detection of difficulties and risks
associated  with  students' educational
trajectories. In this context, prediction is
viewed as an essential tool for supporting the
decisions of teachers, school counselors, and
educational policymakers, thereby facilitating

early and effective intervention.

o Predicting Learning Disabilities: In
the field of identifying conditions such
as Dyslexia or attention-deficit
disorders, Random Forests provide an
efficacious model for early detection
by relying on multiple indicators,
including performance in reading and

writing tests, classroom behaviors, and

cognitive abilities. A recent study
demonstrated that the use of RF helped
classify  children with learning
disabilities with an  accuracy
exceeding  82%,  outperforming
Logistic Regression models (Zhang et
al., 2021, p. 45). This underscores the
model's importance in enabling early
interventions  that  mitigate  the
worsening of these issues and increase

opportunities for academic success.

Dropout Prediction: Student dropout
represents a prominent challenge for
educational systems, particularly in
environments suffering from resource
scarcity or social disparities. Random
Forests offer a tool capable of
analyzing vast amounts of student-
related data—such as attendance,
grades, classroom participation, and
Socioeconomic Status (SES)—to
estimate the probability of dropout. For
example, a study conducted in U.S.
high schools proved the efficacy of RF
in predicting dropout risk with an
accuracy of 90%, allowing schools to
identify at-risk students and intervene
early (Bowers et al.,, 2013, p. 13).
These findings highlight the practical
value of the model in supporting

preventive educational policies.

Forecasting Academic Performance:

Random  Forests contribute to
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predicting  levels of academic
achievement.  Forecasting  student
results in national or international
examinations helps direct educational
resources toward groups requiring
additional support. A study on high
school students showed that RF
outperformed traditional models in
predicting standardized test scores and
accurately  identified the most
influential factors, such as absence
rates, family support, and time

allocated for revision (Luan et al.,

2020, p. 220).

Estimating Variable Importance:
Random Forests allow for the
assessment of Variable Importance,
providing psychologists and educators
with rich information regarding the
factors most significantly impacting
achievement. For instance, a model
might reveal that a student’s
participation  in  curricular  and
extracurricular activities 1s more
influential on performance than the
family’s economic level, assisting in
the formulation of more targeted

intervention strategies (Ahmed et al.,

2022, p. 77).

Handling Imbalanced and Missing
Data: The ability to handle missing or
imbalanced data grants Random

Forests a particular advantage in

educational and school psychology
research. Field studies in schools often
encounter issues such as student
absenteeism or refusal to answer
sensitive surveys. Nonetheless,
Random Forests can process these
statistical gaps effectively without
significantly compromising the
model's accuracy (Tang & Ishwaran,

2017, p. 256).
Challenges in the School Context

Despite these advantages, certain challenges
must be considered. The model requires
extensive and comprehensive databases
encompassing multiple student variables,
which may be limited in schools lacking
advanced digital data collection systems.
Furthermore, the complex nature of Random
Forests may hinder the easy interpretation of
results by educators who are not specialized in
statistical analysis or machine learning

(Molnar, 2020, p. 102).

Conclusion of the Section: Based on the
above, it can be concluded that Random
Forests offer significant added value to school
psychology, particularly in predicting learning
disabilities, estimating dropout probabilities,
and forecasting academic performance. They
contribute not only to enhancing predictive
accuracy but also to providing a knowledge

base that enables more informed educational
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and psychological decisions, ultimately

serving the student's long-term interests.
3. Review of Literature
3.1. Overview of Research Trends

Over the past decade, there has been a
significant surge in studies employing machine
learning algorithms—Iled by Random Forests
(RF)—within mental health and educational
research. These models are utilized for both
diagnostic classification and the prediction
of therapeutic/educational outcomes. This
growth is driven by the increased availability
of Big Data (electronic clinical records, school
databases, and digital behavioral metrics) and
the inherent capacity of ensemble algorithms
like RF to handle multidimensional, non-linear
variables and missing values while providing
superior predictive stability compared to
individual decision trees (Bzdok & Meyer-
Lindenberg, 2018).

3.2 Clinical Studies: Predicting
Depression/Anxiety Risks and Treatment

Responses
a. Risk Prediction and Early Detection

Numerous studies have utilized Random
Forests to detect depression and anxiety or
predict the onset of symptoms based on a
fusion of clinical, psychometric, and
behavioral data. Applied research indicates
that RF models achieve high classification

accuracy when trained on diverse indicators

(symptom logs, psychometric scales, and
biomarkers) compared to traditional statistical
models (Pearson et al., 2018). This
performance is partly attributed to the model's
ability to capture complex non-linear
relationships between behavioral and clinical

variables.
b. Predicting Treatment Response

Comprehensive reviews and applied models
demonstrate that Random Forests effectively
forecast whether a patient will respond to a
specific intervention (pharmacological or
psychological). Systematic reviews show that
ML approaches in predicting treatment
outcomes are promising, with RF frequently
emerging as a superior algorithm in
psychotherapy outcome prediction (Chekroud
et al.,, 2021; Rost et al, 2023). Applied
examples include predicting responses to
Cognitive Behavioral Therapy (CBT) versus
medication for depression, where certain
models recorded high predictive accuracy,
thereby

enhancing the efficacy of

personalized treatment allocation.
c. Differential Diagnosis (Classification)

Other studies have employed Random Forests
to distinguish between conditions with
overlapping symptoms (e.g., differentiating
between depression and anxiety disorders or
various types of psychosis). The algorithm
provides Feature Importance metrics, which

help researchers identify which clinical
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variables contribute most to the differentiation,
thereby refining diagnostic criteria and guiding

clinical assessment (Cutler et al., 2007).

Critical Evaluation (Clinical Research

Observations)

e Generalizability: While results are
encouraging, the generalizability of
these findings remains constrained by
sample sizes and variance, as many
studies rely on moderate samples from

limited centers.

e Methodological Rigor: There is a
pressing need for large-scale, multi-
center prospective studies to validate
the stability of importance indicators
and mitigate the risk of overfitting.
Systematic reviews emphasize the
necessity for standardized reporting

protocols (Sajjadian et al., 2022).

3.3. Educational and School Studies:
Predicting Dropout, Learning Disabilities,

and Academic Achievement
a. Dropout Prediction

Extensive research has utilized Random
Forests to develop Early-Warning Systems
(EWS) for student dropout. These models rely
on indicators such as attendance, classroom
behavior, prior grades, and socioeconomic
factors. These models have proven highly

effective, with applied studies reporting

accuracy levels exceeding 80-90% in
identifying at-risk students, enabling timely
supportive interventions (Bowers et al., 2013;

Andreas et al., 2020).

b.  Predicting Disabilities

(Dyslexia and LD)

Learning

Studies on the detection of reading and writing
difficulties indicate that ensemble algorithms,
including RF, are capable of accurately
classifying children with disabilities when
supplied with multidimensional variables
(linguistic tests, executive functions, and
classroom behavior). Research in the field of
reading has documented the superior
performance of ML-based approaches over
traditional methods for the early detection of
Dyslexia (Raatikainen et al., 2021; Zhang et
al., 2021).

c. Forecasting Academic Performance and

Achievement

In predicting achievement, Random Forests
have been used to forecast standardized test
results and identify influential factors such as
absenteeism, participation, family support, and
study time. Numerous findings suggest that RF
outperforms linear models in predictive
accuracy and in identifying variable
importance that may remain obscured in
traditional models (Psyridou et al., 2024; Luan
et al., 2020).

Critical Evaluation (Observations on

Educational Research)
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o Data Integrity: The robustness of the
findings depends heavily on the quality
and integrity of school records; in
environments with poor documentation
or inconsistent data entry, predictive
accuracy may be  significantly

compromised.

o Ethical Considerations: There is an
imperative need to address privacy and
ethical considerations when utilizing
student data for predictions that could
influence their educational future.
Recent studies emphasize the necessity
of clear privacy policies when
implementing Early

Systems (EWS).

Warning

4. Regional and Arab Studies: Models and
Applications in the Arab World

Arab research into the applications of Random
Forests (RF) within psychological contexts is
still in its nascent stages. However, applied
studies have begun to emerge, particularly in
the fields of education and e-learning, utilizing
RF to analyze learner behavior on educational

platforms. Examples include:

e E-Learning Risk Detection: Research
into the early detection of at-risk
students in open and online learning
environments has demonstrated the
efficacy of RF in identifying academic

risks (Balabied & Eid, 2023). These

studies are particularly valuable as they
address data within Arab/regional
contexts and highlight challenges

related to data collection and quality.

e Arabic
Processing (NLP): Other works in

Natural Language
Arabic text classification or the
processing of educational data in the
region have utilized Random Forests as
a Dbaseline for comparison in
classification tasks or textual feature

identification (Zamzami et al., 2023).

Critical Note: Despite these regional efforts,
there is a prominent lack of large-scale Arab
clinical psychological studies based on
standardized clinical records or longitudinal
designs. This represents a significant research
gap and a clear opportunity for Arab
researchers to conduct replication studies and
consolidate multi-center data to enhance

generalizability.

5. Critical Summary of Results and

Research Gaps

1. Evidence of Effectiveness: Overall,
international literature indicates that
Random Forests are a potent predictive
tool in both clinical and school fields—
especially when high-quality,

sufficient data is available. They

marked

frequently  achieve a

improvement over traditional models
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in classification and predictive
accuracy (Chekroud et al., 2021;
Pearson et al., 2018).

Recurrent Methodological
Constraints: The lack of multi-center
trials, small sample sizes in some
clinical studies, and the limited
interpretability of the models (the
"black-box" nature) remain significant

hurdles to widespread adoption in daily

clinical practice (Molnar, 2020).

Arab Context Gaps: The scarcity of
intensive Arab clinical studies limits
the generalizability of local findings.
Regional research is often skewed
toward e-learning or text classification
rather than  long-term  clinical
psychological studies. There is an
urgent need to establish secure
clinical/school data networks in the
Arab world to facilitate more reliable

research.

Proposed Future Directions: Future
research should focus on integrating
Random Forests with Explainable Al
(XAI) methods—such as SHAP or
LIME—to enhance the interpretability
of  results for practitioners.
Additionally, multi-center longitudinal
studies are required to measure the

stability and generalizability of models

across diverse contexts. Comparing RF

with other modern boosting techniques
(e.g., XGBoost, LightGBM) or deep
learning in specific psychological
cohorts will clarify which models are

best suited for different data types.
6. Discussion

Random Forests (RF) represent a qualitative
advancement in psychological and educational
prediction, bridging the gap between the rigor
of traditional statistical models and the
flexibility of intelligent algorithms. This
discussion examines the model through four
primary dimensions: advantages, limitations,
comparisons with alternative models, and

practical implications.
7. Advantages

The primary strength of Random Forests lies in
their predictive power. By aggregating
hundreds or thousands of trees, the model
significantly reduces the probability of errors
inherent in a single decision tree. This
ensemble approach enhances predictive
accuracy and increases the reliability of results,
particularly when dealing with complex
psychological and behavioral variables

(Breiman, 2001, p. 7).

Furthermore, RF is highly capable of handling
Big Data, an essential feature in modern
psychology =~ which sees a  massive
accumulation of data via digital platforms,
standardized tests, and educational records

(Biau & Scornet, 2016, p. 201). Additionally,
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the model mitigates overfitting through its
bootstrap sampling and collective voting
mechanisms, providing researchers with a
more robust tool for testing hypotheses within

dynamic clinical or educational environments.
7.1. Limitations

Despite these advantages, Random Forests
face several constraints. First is the
Interpretability (Black Box) Problem: the
sheer number of trees and the complexity of
inter-variable relationships make it difficult for
researchers or practitioners to explain the
internal decision-making mechanism (Molnar,
2020, p. 99). This presents ethical challenges
in therapeutic or educational contexts where
transparency is required to justify decisions or

recommendations.

Second, the model requires  high
computational resources. RF demands
significant processing power and memory,
especially when dealing with massive
databases containing hundreds of variables and
thousands of cases (Probst et al., 2019, p. 48).
This may pose a barrier for educational

institutions or clinics that lack advanced

technological infrastructure.
7.2. Comparison with Other Models

When comparing Random Forests to other
models such as Support Vector Machines
(SVM) or Artificial Neural Networks
(ANNSs), each has distinct strengths and

weaknesses:

« SVM: Highly accurate in
classification, especially with binary
data, but less flexible when handling
multidimensional data or complex non-
linear relationships (Cortes & Vapnik,

1995, p. 276).

e Neural Networks (ANNs): Powerful
in processing complex patterns but
highly prone to overfitting and require
massive datasets for effective training

(LeCun et al., 2015, p. 439).

o Random Forests: Maintain an optimal
balance between accuracy, variance
reduction, and the ability to handle
diverse data types, making them a
practical choice for psychological and

educational research.

8. Practical Implications

The greatest significance of Random Forests
lies in their implications for professional
practice. They enable psychologists to provide
recommendations based on precise, objective
data, thereby elevating the quality of diagnosis

and behavioral forecasting.

e In Clinical Psychology: RF guides
practitioners toward personalized
treatment plans by estimating the
likelihood of response to

psychotherapy or pharmacotherapy.
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e In School Psychology: It assists
counselors in identifying students at
risk of dropout or learning disabilities,
allowing for early interventions

(Bowers et al., 2013, p. 14).

Ultimately, Random Forests serve as a bridge
between statistical theory and practical
application, contributing to a more effective
and equitable educational and health

environment.

9. Conclusion

Random Forests constitute a prominent
predictive model that has proven effective in
clinical and school psychology due to their
ability to process vast, complex data and
mitigate bias and overfitting.  Studies
demonstrate that this model outperforms
traditional methods in early diagnosis,
predicting  therapeutic  responses, and
monitoring academic achievement or dropout
risks (Breiman, 2001, p. 10; Zhang et al., 2021,

p. 46).

The findings of this article highlight that
Random Forests are not merely a statistical
algorithm, but a practical tool that provides
psychologists with more accurate and
informed  decision-making  capabilities.
However, there is a pressing need for further
applied research in Arab contexts, where the

use of machine learning techniques remains

limited. Most current studies are concentrated
in Western countries, making their results less
generalizable to Arab cultural and educational

specificities (Ahmed et al., 2022, p. 82).

Future Directions: The integration of
Random Forests with Deep Learning or
Hybrid Models may open new horizons.
Combining them with deep neural networks
could enhance the discovery of hidden patterns
in non-linear data (LeCun et al., 2015, p. 438).
As Al continues to evolve, the future of this
field is promising, provided there is a strong
integration between clinical expertise and
technical knowledge. Investing in these
models is no longer a scientific luxury, but a
necessity to keep pace with global shifts in
understanding  and

supporting  human

behavior.
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