EARLY DETECTION OF CARDIAC ARREST IN NEWBORN BABIES

Authors

  • M.Kavitha,Doma Nandini , Kakularam Akhila , C. Priyambica

Keywords:

Bagging classifiers, Deep Neural Networks, Machine Learning, Deep Learning, Cardiac capture , Babies.

Abstract

Babies with heart arrest may be experiencing a fundamental restorative crisis that need prompt intervention to ensure timely treatment and positive outcomes.Using methods from machine learning and deep learning, we provide a fresh perspective on early discovery in this term paper.

Downloads

Download data is not yet available.

References

Raghunath, S., Cerna, A. E. U., Jing, L., vanMaanen, D. P., Stough, J., Hartzel, D. N., ... & Fornwalt, B. K. (2019). Deep neural networks can predict mortality from 12-lead electrocardiogram voltage data. arXiv preprint arXiv:1904.07032.

Bose, S. N., Verigan, A., Hanson, J., Ahumada, L. M., Ghazarian, S. R., Goldenberg, N. A., ... & Jacobs, J. P. (2019). Early identification of impending cardiac arrest in neonates and infants in the cardiovascular ICU: a statistical modelling approach using physiologic monitoring data. Cardiology in the young, 29(11), 1340-1348.

Downloads

Published

2023-12-24

How to Cite

M.Kavitha,Doma Nandini , Kakularam Akhila , C. Priyambica. (2023). EARLY DETECTION OF CARDIAC ARREST IN NEWBORN BABIES . Pegem Journal of Education and Instruction, 13(4), 659–673. Retrieved from https://pegegog.net/index.php/pegegog/article/view/4029

Issue

Section

Article